e Score

e Questions and Answers

Preview Questions and Answers
Exam Tips

CKA Simulator Kubernetes 1.23

https://killer.sh

Pre Setup

Once you've gained access to your terminal it might be wise to spend ~1 minute to setup your environment. You could set these:

alias k=kubectl # will already be pre-configured
export do="--dry-run=client -o yaml" # k get pod x $do
export now="--force --grace-period 0" # k delete pod x $now

Vim

To make vim use 2 spaces for a tab edit ~/.vimrc to contain:

set tabstop=2
set expandtab
set shiftwidth=2

More setup suggestions are in the tips section.

Question 1 | Contexts

Task weight: 1%

You have access to multiple clusters from your main terminal through kubect1 contexts. Write all those context names into
/opt/course/1/contexts .

Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh, the command should use
kubect1 .

Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh, but without the use of
kubect1 .

Answer:

Maybe the fastest way is just to run:

k config get-contexts # copy manually

k config get-contexts -o name > /opt/course/l/contexts

Or using jsonpath:

k config view -o yaml # overview

k config view -o jsonpath="{.contexts[*].name}"

k config view -o jsonpath="{.contexts[*].name}" | tr " " "\n" # new lines

k config view -o jsonpath="{.contexts[*].name}" | tr " " "\n" > /opt/course/l/contexts

The content should then look like:

/opt/course/1l/contexts
k8s-cl-H

k8s-c2-AC

k8s-c3-ccc

Next create the first command:

/opt/course/1l/context_default_kubectl.sh
kubect1 config current-context

= sh /opt/course/1/context_default_kubectl.sh
k8s-c1-H

https://killer.sh/attendee/60b276c8-d15c-43bf-8fc7-10330efbdb3a/score
https://killer.sh/

And the second one:

/opt/course/1l/context_default_no_kubectl.sh
cat ~/.kube/config | grep current

- sh /opt/course/1/context_default_no_kubectl.sh
current-context: k8s-cl-H

In the real exam you might need to filter and find information from bigger lists of resources, hence knowing a little jsonpath and simple bash
filtering will be helpful.

The second command could also be improved to:

/opt/course/1l/context_default_no_kubectl.sh
cat ~/.kube/config | grep current | sed -e "s/current-context: //"

Question 2 | Schedule Pod on Master Node

Task weight: 3%
Use context: kubect1 config use-context k8s-cl-H

Create a single Pod of image httpd:2.4.41-alpine in Namespace default. The Pod should be named podl and the container should be

named podl-container . This Pod should only be scheduled on a master node, do not add new labels any nodes.

Shortly write the reason on why Pods are by default not scheduled on master nodes into /opt/course/2/master_schedule_reason .

Answer:

First we find the master node(s) and their taints:

~

get node # find master node
lk describe node clusterl-masterl | grep Taint # get master node taints
lk describe node clusterl-masterl | grep Labels -A 10 # get master node labels

k get node clusterl-masterl --show-labels # OR: get master node labels

Next we create the Pod template:

check the export on the very top of this document so we can use $do
k run podl --image=httpd:2.4.41-alpine $do > 2.yaml

vim 2.yaml

Perform the necessary changes manually. Use the Kubernetes docs and search for example for tolerations and nodeSelector to find
examples:

2.yaml
apiversion: vl
kind: Pod
metadata:

creationTimestamp: null

Tabels:
run: podl

name: podl

spec:

containers:

- image: httpd:2.4.41-alpine
name: podl-container # change
resources: {}

dnsPolicy: ClusterFirst

restartPolicy: Always

tolerations: # add
- effect: NoSchedule # add
key: node-role.kubernetes.io/master # add
nodeSelector: # add
node-role.kubernetes.io/master: "" # add

status: {}

Important here to add the toleration for running on master nodes, but also the nodeSelector to make sure it only runs on master nodes. If we
only specify a toleration the Pod can be scheduled on master or worker nodes.

Now we create it:

k -f 2.yam1 create

Let's check if the pod is scheduled:

- k get pod podl -o wide

NAME READY STATUS RESTARTS B NODE NOMINATED NODE

podl 1/1 Running 0 L clusterl-masterl <none>

Finally the short reason why Pods are not scheduled on master nodes by default:

/opt/course/2/master_schedule_reason
master nodes usually have a taint defined

Question 3 | Scale down StatefulSet

Task weight: 1%

Use context: kubect1 config use-context k8s-cl-H

There are two Pods named o3db-* in Namespace project-c13.C13 management asked you to scale the Pods down to one replica to save

resources. Record the action.

Answer:
If we check the Pods we see two replicas:
- k -n project-cl3 get pod | grep o3db

03db-0 1/1 Running 0
03db-1 1/1 Running 0

52s
42s

From their name it looks like these are managed by a StatefulSet. But if we're not sure we could also check for the most common resources

which manage Pods:

- k -n project-cl3 get deploy,ds,sts | grep o3db
statefulset.apps/o3db 2/2 2m56s

Confirmed, we have to work with a StatefulSet. To find this out we could also look at the Pod labels:

- k -n project-cl3 get pod --show-labels | grep o3db
03db-0 1/1 Running 0
5fbd4bb9cc,statefulset.kubernetes.io/pod-name=03db-0
o3db-1 1/1 Running 0
5fbd4bb9cc,statefulset.kubernetes.io/pod-name=03db-1

To fulfil the task we simply run:

- k -n project-cl3 scale sts 03db --replicas 1 --record
statefulset.apps/o3db scaled

- k -n project-cl3 get sts o3db
NAME READY AGE
03db 1/1 4m39s

The --record created an annotation:

- k -n project-cl3 describe sts o03db

Name: o3db

Namespace: project-cl3

CreationTimestamp: Sun, 20 Sep 2020 14:47:57 +0000
Selector: app=nginx

Labels: <none>

3m29s

3ml19s

app=nginx,controller-revision-hash=03db-

app=nginx,controller-revision-hash=03db-

Annotations: kubernetes.io/change-cause: kubectl scale sts o3db --namespace=project-cl3 --replicas=1l --

record=true
Replicas: 1 desired | 1 total

C13 Mangement is happy again.

Question 4 | Pod Ready if Service is reachable

Task weight: 4%

Use context: kubectl config use-context k8s-cl-H

Do the following in Namespace default. Create a single Pod named ready-if-service-ready of image nginx:1.16.1-alpine. Configure a
LivenessProbe which simply runs true . Also configure a ReadinessProbe which does check if the url http://service-am-i-ready:80 is
reachable, you can use wget -T2 -0- http://service-am-i-ready:80 for this. Start the Pod and confirm it isn't ready because of the
ReadinessProbe.

Create a second Pod named am-i-ready of image nginx:1.16.1-alpine with label id: cross-server-ready . The already existing Service

service-am-i-ready should now have that second Pod as endpoint.

Now the first Pod should be in ready state, confirm that.

Answer:

It's a bit of an anti-pattern for one Pod to check another Pod for being ready using probes, hence the normally available
readinessProbe.httpGet doesn't work for absolute remote urls. Still the workaround requested in this task should show how probes and
Pod<->Service communication works.

First we create the first Pod:

k run ready-if-service-ready --image=nginx:1.16.1-alpine $do > 4_podl.yam]

vim 4_podl.yaml

Next perform the necessary additions manually:

4_podl.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
run: ready-if-service-ready
name: ready-if-service-ready
spec:
containers:
- image: nginx:1.16.1-alpine
name: ready-if-service-ready
resources: {}

TivenessProbe: # add from here
exec:
command:
- "true'
readinessProbe:
exec:
command:
- sh
- -C
'wget -T2 -0- http://service-am-i-ready:80"' # to here
dnspPolicy: ClusterFirst
restartPolicy: Always
status: {}

Then create the Pod:
k -f 4_podl.yam]l create
And confirm its in a non-ready state:

- k get pod ready-if-service-ready
NAME READY STATUS RESTARTS AGE
ready-if-service-ready 0/1 Running 0 7s

We can also check the reason for this using describe:

- k describe pod ready-if-service-ready

warning Unhealthy 18s kubelet, clusterl-workerl Readiness probe failed: Connecting to service-am-i-ready:80
(10.109.194.234:80)

wget: download timed out
Now we create the second Pod:
k run am-i-ready --image=nginx:1.16.1-alpine --labels="1id=cross-server-ready"

The already existing Service service-am-i-ready should now have an Endpoint:

k describe svc service-am-i-ready
k get ep # also possible

Which will result in our first Pod being ready, just give it a minute for the Readiness probe to check again:

- k get pod ready-if-service-ready
NAME READY STATUS RESTARTS AGE
ready-if-service-ready 1/1 Running 0 53s

Look at these Pods coworking together!

Question 5 | Kubectl sorting

Task weight: 1%
Use context: kubect1l config use-context k8s-cl-H

There are various Pods in all namespaces. Write a command into /opt/course/5/find_pods.sh which lists all Pods sorted by their AGE

(metadata.creationTimestamp)

Write a second command into /opt/course/5/find_pods_uid.sh which lists all Pods sorted by field metadata.uid.Use kubectl sorting for
both commands.

Answer:

A good resources here (and for many other things) is the kubectl-cheat-sheet. You can reach it fast when searching for "cheat sheet" in the
Kubernetes docs.

/opt/course/5/find_pods.sh
kubectl get pod -A --sort-by=.metadata.creationTimestamp

And to execute:

- sh /opt/course/5/find_pods.sh

NAMESPACE NAME C AGE
kube-system kube-scheduler-clusterl-masterl - 63m
kube-system etcd-clusterl-masterl S 63m
kube-system kube-apiserver-clusterl-masterl - 63m
kube-system kube-controller-manager-clusterl-masterl - 63m

For the second command:

/opt/course/5/find_pods_uid.sh
kubectl get pod -A --sort-by=.metadata.uid

And to execute:

- sh /opt/course/5/find_pods_uid.sh

NAMESPACE NAME S AGE
kube-system coredns-5644d7b6d9-vwm7g S 68m
project-cl3 cl13-3cc-runner-heavy-5486d76dd4-ddvilt S 63m
project-hamster web-hamster-shop-849966f479-278vp - 63m
project-cl3 c13-3cc-web-646b6c8756-qsg4b S 63m

Question 6 | Storage, PV, PVC, Pod volume

Task weight: 8%

Use context: kubectl config use-context k8s-cl-H

Create a new PersistentVolume named safari-pv . It should have a capacity of 2Gi, accessMode ReadWriteOnce, hostPath /volumes/Data and
no storageClassName defined.

Next create a new PersistentVolumeClaim in Namespace project-tiger named safari-pvc . It should request 2Gi storage, accessMode
ReadWriteOnce and should not define a storageClassName. The PVC should bound to the PV correctly.

Finally create a new Deployment safari in Namespace project-tiger which mounts that volume at /tmp/safari-data. The Pods of that
Deployment should be of image httpd:2.4.41-alpine.

Answer

vim 6_pv.yaml

Find an example from https://kubernetes.io/docs and alter it:

6_pv.yam]
kind: Persistentvolume
apiversion: vl

metadata:

name: safari-pv
spec:

capacity:

storage: 2Gi
accessModes:

- ReadwriteOnce
hostPath:

path: "/volumes/Data"

Then create it:

k -f 6_pv.yaml create

Next the PersistentVolumeClaim:

vim 6_pvc.yaml

Find an example from https://kubernetes.io/docs and alter it:

6_pvc.yaml
kind: PersistentvolumeClaim
apiversion: vl
metadata:
name: safari-pvc
namespace: project-tiger
spec:
accessModes:
- ReadwriteOnce
resources:
requests:
storage: 2Gi

Then create:

k -f 6_pvc.yaml create

And check that both have the status Bound:

- k -n project-tiger get pv,pvc

NAME CAPACITY ... STATUS CLAIM
persistentvolume/safari-pv 2Gi ... Bound project-tiger/safari-pvc ...
NAME STATUS VOLUME CAPACITY ...
persistentvolumeclaim/safari-pvc Bound safari-pv 2Gi

Next we create a Deployment and mount that volume:

k -n project-tiger create deploy safari \
--image=httpd:2.4.41-alpine $do > 6_dep.yaml

vim 6_dep.yaml

Alter the yaml to mount the volume:

6_dep.yaml
apiversion: apps/vl
kind: Deployment
metadata:
creationTimestamp: null
Tabels:
app: safari
name: safari
namespace: project-tiger

spec:
replicas: 1
selector:
matchLabels:

app: safari
strategy: {}

https://kubernetes.io/docs
https://kubernetes.io/docs

template:

metadata:
creationTimestamp: null
Tabels:
app: safari
spec:
volumes: # add
- name: data # add
persistentvolumeClaim: # add
claimName: safari-pvc # add
containers:
- image: httpd:2.4.41-alpine
name: container
volumeMounts: # add
- name: data # add
mountPath: /tmp/safari-data # add
k -f 6_dep.yaml create
We can confirm its mounting correctly:
- k -n project-tiger describe pod safari-5cbf46d6d-mjhsb | grep -A2 Mounts:

Mounts:
/tmp/safari-data from data (rw) # there it is
/var/run/secrets/kubernetes.io/serviceaccount from default-token-n2sjj (ro)

Question 7 | Node and Pod Resource Usage

Task weight: 1%
Use context: kubect1 config use-context k8s-cl-H

The metrics-server hasn't been installed yet in the cluster, but it's something that should be done soon. Your college would already like to
know the kubectl commands to:

1. show node resource usage
2. show Pod and their containers resource usage

Please write the commands into /opt/course/7/node.sh and /opt/course/7/pod.sh.

Answer:

The command we need to use here is top:

- k top -h
Display Resource (CPU/Memory/Storage) usage.

The top command allows you to see the resource consumption for nodes or pods.
This command requires Metrics Server to be correctly configured and working on the server.
AvailabTle Commands:

node Display Resource (CPU/Memory/Storage) usage of nodes
pod Display Resource (CPU/Memory/Storage) usage of pods

We see that the metrics server is not configured yet:

- k top node
error: Metrics API not available

But we trust the kubectl documentation and create the first file:

/opt/course/7/node.sh
kubectl top node

For the second file we might need to check the docs again:

- k top pod -h
Display Resource (CPU/Memory/Storage) usage of pods.

Namespace in current context is ignored even if specified with --namespace.
--containers=false: If present, print usage of containers within a pod.
--no-headers=false: If present, print output without headers.

With this we can finish this task:

/opt/course/7/pod.sh
kubectl top pod --containers=true

Question 8 | Get Master Information

Task weight: 2%

Use context: kubect1 config use-context k8s-cl-H

Ssh into the master node with ssh clusterl-masterl. Check how the master components kubelet, kube-apiserver, kube-scheduler, kube-
controller-manager and etcd are started/installed on the master node. Also find out the name of the DNS application and how it's
started/installed on the master node.

Write your findings into file /opt/course/8/master-components.txt . The file should be structured like:

/opt/course/8/master-components.txt
kubelet: [TYPE]

kube-apiserver: [TYPE]
kube-scheduler: [TYPE]
kube-controller-manager: [TYPE]

etcd: [TYPE]

dns: [TYPE] [NAME]

Choices of [TYPE] are: not-installed, process, static-pod, pod

Answer:

We could start by finding processes of the requested components, especially the kubelet at first:

- ssh clusterl-masterl

root@clusterl-masterl:~# ps aux | grep kubelet # shows kubelet process

We can see which components are controlled via systemd looking at /etc/systemd/system directory:

- root@clusterl-masterl:~# find /etc/systemd/system/ | grep kube
/etc/systemd/system/kubelet.service.d
/etc/systemd/system/kubelet.service.d/10-kubeadm.conf
/etc/systemd/system/multi-user.target.wants/kubelet.service

= root@clusterl-masterl:~# find /etc/systemd/system/ | grep etcd

This shows kubelet is controlled via systemd, but no other service named kube nor etcd. It seems that this cluster has been setup using
kubeadm, so we check in the default manifests directory:

- root@clusterl-masterl:~# find /etc/kubernetes/manifests/
/etc/kubernetes/manifests/
/etc/kubernetes/manifests/kube-controller-manager.yaml
/etc/kubernetes/manifests/etcd.yaml
/etc/kubernetes/manifests/kube-scheduler-special.yaml
/etc/kubernetes/manifests/kube-apiserver.yaml
/etc/kubernetes/manifests/kube-scheduler.yaml

(The kubelet could also have a different manifests directory specified via parameter --pod-manifest-path in it's systemd startup config)

This means the main 4 master services are setup as static Pods. There also seems to be a second scheduler kube-scheduler-special
existing.

Actually, let's check all Pods running on in the kube-system Namespace on the master node:

- root@clusterl-masterl:~# kubectl -n kube-system get pod -o wide | grep masterl

coredns-5644d7b6d9-c4f68 1/1 Running L. clusterl-masterl
coredns-5644d7b6d9-t84sc 1/1 Running S clusterl-masterl
etcd-clusterl-masterl 1/1 Running L clusterl-masterl
kube-apiserver-clusterl-masterl 1/1 Running L clusterl-masterl
kube-controller-manager-clusterl-masterl 1/1 Running L clusterl-masterl
kube-proxy-q955p 1/1 Running . clusterl-masterl
kube-scheduler-clusterl-masterl 1/1 Running L clusterl-masterl
kube-scheduler-special-clusterl-masterl 0/1 CrashLoopBackoff L clusterl-masterl

weave-net-mwj47 2/2 Running L clusterl-masterl

There we see the 5 static pods, with -clusterl-masterl as suffix.

We also see that the dns application seems to be coredns, but how is it controlled?

- root@clusterl-masterl$ kubect]l -n kube-system get ds

NAME DESIRED CURRENT L NODE SELECTOR AGE
kube-proxy 3 3 L kubernetes.io/os=11inux 155m
weave-net 3 3 B <none> 155m

- root@clusterl-masterl$ kubectl -n kube-system get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
coredns 2/2 2 2 155m

Seems like coredns is controlled via a Deployment. We combine our findings in the requested file:

/opt/course/8/master-components.txt

kubelet: process

kube-apiserver: static-pod

kube-scheduler: static-pod

kube-scheduler-special: static-pod (status CrashLoopBackoff)
kube-controller-manager: static-pod

etcd: static-pod

dns: pod coredns

You should be comfortable investigating a running cluster, know different methods on how a cluster and its services can be setup and be able
to troubleshoot and find error sources.

Question 9 | Kill Scheduler, Manual Scheduling

Task weight: 5%
Use context: kubect1 config use-context k8s-c2-AC

Ssh into the master node with ssh cluster2-masterl. Temporarily stop the kube-scheduler, this means in a way that you can start it again
afterwards.

Create a single Pod named manual-schedule of image httpd:2.4-alpine, confirm its created but not scheduled on any node.
Now you're the scheduler and have all its power, manually schedule that Pod on node cluster2-master1. Make sure it's running.

Start the kube-scheduler again and confirm its running correctly by creating a second Pod named manual-schedule2 of image httpd:2.4-

alpine and check if it's running on cluster2-worker1.

Answer:
Stop the Scheduler

First we find the master node:

- k get node

NAME STATUS ROLES AGE VERSION
cluster2-masterl Ready master 26h vl.23.1
cluster2-workerl Ready <none> 26h vl.23.1

Then we connect and check if the scheduler is running:

= ssh cluster2-masterl

- root@cluster2-masterl:~# kubectl -n kube-system get pod | grep schedule
kube-scheduler-cluster2-masterl 1/1 Running 0 6s

Kill the Scheduler (temporarily):

- root@cluster2-masterl:~# cd /etc/kubernetes/manifests/

= root@cluster2-masterl:~# mv kube-scheduler.yaml
And it should be stopped:

= root@cluster2-masterl:~# kubectl -n kube-system get pod | grep schedule

= root@cluster2-masterl:~#

Create a Pod

Now we create the Pod:
k run manual-schedule --image=httpd:2.4-alpine

And confirm it has no node assigned:

- k get pod manual-schedule -o wide
NAME READY STATUS S NODE NOMINATED NODE
manual-schedule 0/1 Pending S <none> <none>

Manually schedule the Pod

Let's play the scheduler now:

k get pod manual-schedule -o yaml > 9.yaml

9.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: "2020-09-047T15:51:02z"
Tabels:
run: manual-schedule
managedFields:

manager: kubectl-run
operation: Update
time: "2020-09-04T15:51:022"
name: manual-schedule
namespace: default
resourceversion: "3515"
selfLink: /api/vl/namespaces/default/pods/manual-schedule
uid: 8e9d2532-4779-4e63-b5af-feb82c74a935
spec:
nodeName: cluster2-masterl # add the master node name
containers:
- image: httpd:2.4-alpine
imagePullPolicy: IfNotPresent
name: manual-schedule
resources: {}
terminationMessagePath: /dev/termination-Tog
terminationMessagePolicy: File
volumeMounts:
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
name: default-token-nxnc7
readonly: true
dnsPolicy: ClusterFirst

The only thing a scheduler does, is that it sets the nodeName for a Pod declaration. How it finds the correct node to schedule on, that's a very
much complicated matter and takes many variables into account.

As we cannot kubectl1 apply or kubectl edit , in this case we need to delete and create or replace:
k -f 9.yaml replace --force
How does it look?

= k get pod manual-schedule -o wide
NAME READY STATUS B NODE
manual-schedule 1/1 Running - cluster2-masterl

It looks like our Pod is running on the master now as requested, although no tolerations were specified. Only the scheduler takes
tains/tolerations/affinity into account when finding the correct node name. That's why its still possible to assign Pods manually directly to a
master node and skip the scheduler.

Start the scheduler again
= ssh cluster2-masterl

- root@cluster2-masterl:~# cd /etc/kubernetes/manifests/

= root@cluster2-masterl:~# mv ../kube-scheduler.yaml

Checks its running:

- root@cluster2-masterl:~# kubectl -n kube-system get pod | grep schedule

kube-scheduler-cluster2-masterl 1/1 Running 0 16s
Schedule a second test Pod:

k run manual-schedule2 --image=httpd:2.4-alpine

- k get pod -o wide | grep schedule
manual-schedule 1/1 Running - cluster2-masterl
manual-schedule2 1/1 Running . cluster2-workerl

Back to normal.

Question 10 | RBAC ServiceAccount Role RoleBinding

Task weight: 6%

Use context: kubectl config use-context k8s-cl-H

Create a new ServiceAccount processor in Namespace project-hamster . Create a Role and RoleBinding, both named processor as well.
These should allow the new SA to only create Secrets and ConfigMaps in that Namespace.

Answer:

Let's talk a little about RBAC resources

A ClusterRole| Role defines a set of permissions and where it is available, in the whole cluster or just a single Namespace.

A ClusterRoleBinding | RoleBinding connects a set of permissions with an account and defines where it is applied, in the whole cluster or just a
single Namespace.

Because of this there are 4 different RBAC combinations and 3 valid ones:

1. Role + RoleBinding (available in single Namespace, applied in single Namespace)

2. ClusterRole + ClusterRoleBinding (available cluster-wide, applied cluster-wide)

3. ClusterRole + RoleBinding (available cluster-wide, applied in single Namespace)

4. Role + ClusterRoleBinding (NOT POSSIBLE: available in single Namespace, applied cluster-wide)

To the solution

We first create the ServiceAccount:

- k -n project-hamster create sa processor

serviceaccount/processor created

Then for the Role:

k -n project-hamster create role -h # examples
So we execute:

k -n project-hamster create role processor \
--verb=create \
--resource=secret \
--resource=configmap

Which will create a Role like:

kubectl -n project-hamster create role accessor --verb=create --resource=secret --resource=configmap
apiversion: rbac.authorization.k8s.io/vl
kind: Role
metadata:

name: processor

namespace: project-hamster
rules:
- apiGroups:

resources:

- secrets

- configmaps

verbs:

- create

Now we bind the Role to the ServiceAccount:

k -n project-hamster create rolebinding -h # examples

So we create it:

k -n project-hamster create rolebinding processor \
--role processor \
--serviceaccount project-hamster:processor

This will create a RoleBinding like:

kubectl -n project-hamster create rolebinding processor --role processor --serviceaccount project-hamster:processor
apiversion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:
name: processor
namespace: project-hamster
roleref:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: processor
subjects:
- kind: ServiceAccount
name: processor
namespace: project-hamster

To test our RBAC setup we can use kubectl auth can-i:

lk auth can-i -h # examples

Like this:

- k -n project-hamster auth can-i create secret \
--as system:serviceaccount:project-hamster:processor

yes
- k -n project-hamster auth can-i create configmap \
--as system:serviceaccount:project-hamster:processor
yes
- k -n project-hamster auth can-i create pod \
--as system:serviceaccount:project-hamster:processor
no
- k -n project-hamster auth can-i delete secret \
--as system:serviceaccount:project-hamster:processor
no
- k -n project-hamster auth can-i get configmap \

--as system:serviceaccount:project-hamster:processor
no

Done.

Question 11 | DaemonSet on all Nodes

Task weight: 4%
Use context: kubect1 config use-context k8s-cl-H

Use Namespace project-tiger for the following. Create a DaemonSet named ds-important with image httpd:2.4-alpine and labels
id=ds-important and uuid=18426a0b-5f59-4e10-923f-c0e078e82462 . The Pods it creates should request 10 millicore cpu and 10 mebibyte
memory. The Pods of that DaemonSet should run on all nodes, master and worker.

Answer:

As of now we aren't able to create a DaemonSet directly using kubect1, so we create a Deployment and just change it up:

k -n project-tiger create deployment --image=httpd:2.4-alpine ds-important $do > 11.yaml

vim 11.yaml

(Sure you could also search for a DaemonSet example yaml in the Kubernetes docs and alter it.)

Then we adjust the yaml to:

11.yaml
apiversion: apps/vl

kind: DaemonSet # change from Deployment to Daemonset
metadata:
creationTimestamp: null
Tabels: # add
id: ds-important # add
uuid: 18426a0b-5f59-4e10-923f-c0e078e82462 # add
name: ds-important
namespace: project-tiger # important
spec:
#replicas: 1 # remove
selector:
matchLabels:
id: ds-important # add
uuid: 18426a0b-5f59-4e10-923f-c0e078e82462 # add
#strategy: {} # remove
template:
metadata:
creationTimestamp: null
Tabels:
id: ds-important # add
uuid: 18426a0b-5f59-4e10-923f-c0e078e82462 # add
spec:

containers:
- image: httpd:2.4-alpine
name: ds-important

resources:
requests: # add
cpu: 10m # add
memory: 10Mi # add
tolerations: # add
- effect: NoSchedule # add
key: node-role.kubernetes.io/master # add
#status: {} # remove

It was requested that the DaemonSet runs on all nodes, so we need to specify the toleration for this.

Let's confirm:

k -f 11l.yaml create

- k -n project-tiger get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
ds-important 3 3 3 3 3 <none> 8s

- k -n project-tiger get pod -1 id=ds-important -o wide

NAME READY STATUS NODE

ds-important-6pvgm 1/1 Running L clusterl-workerl
ds-important-1h5ts 1/1 Running S clusterl-masterl
ds-important-ghjcq 1/1 Running - clusterl-worker?2

Question 12 | Deployment on all Nodes

Task weight: 6%

Use context: kubect1 config use-context k8s-cl-H

Use Namespace project-tiger for the following. Create a Deployment named deploy-important with label id=very-important (the Pods
should also have this label) and 3 replicas. It should contain two containers, the first named containerl with image nginx:1.17.6-alpine

and the second one named container2 with image kubernetes/pause .

There should be only ever one Pod of that Deployment running on one worker node. We have two worker nodes: clusterl-workerl and
clusterl-worker2 . Because the Deployment has three replicas the result should be that on both nodes one Pod is running. The third Pod
won't be scheduled, unless a new worker node will be added.

In a way we kind of simulate the behaviour of a DaemonSet here, but using a Deployment and a fixed number of replicas.

Answer:

There are two possible ways, one using podAntiAffinity and one using topologySpreadConstraint.

PodAntiAffinity

The idea here is that we create a "Inter-pod anti-affinity" which allows us to say a Pod should only be scheduled on a node where another Pod
of a specific label (here the same label) is not already running.

Let's begin by creating the Deployment template:

k -n project-tiger create deployment \
--image=nginx:1.17.6-alpine deploy-important $do > 12.yaml

vim 12.yam]

Then change the yaml to:

12.yam]
apiversion: apps/vl
kind: Deployment

metadata:
creationTimestamp: null
Tabels:
id: very-important # change
name: deploy-important
namespace: project-tiger # important
spec:
replicas: 3 # change
selector:
matchLabels:
id: very-important # change
strategy: {}
template:
metadata:
creationTimestamp: null
Tabels:
id: very-important # change
spec:

containers:
- image: nginx:1.17.6-alpine

name: containerl # change
resources: {}
- image: kubernetes/pause # add
name: container?2 # add
affinity: # add
podAntiAffinity: # add
requiredburingSchedulingIgnoredburingExecution: # add
- labelselector: # add
matchExpressions: # add
- key: id # add
operator: In # add
values: # add
- very-important # add
topologyKey: kubernetes.io/hostname # add

status: {}

Specify a topologyKey, which is a pre-populated Kubernetes label, you can find this by describing a node.

TopologySpreadConstraints

We can achieve the same with topologySpreadConstraints . Best to try out and play with both.

12.yaml
apiversion: apps/vl
kind: Deployment

metadata:
creationTimestamp: null
Tabels:
id: very-important # change
name: deploy-important
namespace: project-tiger # important
spec:
replicas: 3 # change
selector:
matchLabels:
id: very-important # change
strategy: {}
template:
metadata:
creationTimestamp: null
Tabels:
id: very-important # change
spec:

containers:

- image: nginx:1.17.6-alpine
name: containerl # change
resources: {}

- image: kubernetes/pause add
name: container2 # add

+H+

topologySpreadConstraints: # add
- maxSkew: 1 # add
topologyKey: kubernetes.io/hostname # add
whenUnsatisfiable: DoNotSchedule # add
Tabelselector: # add
matchLabels: # add

id: very-important # add

status: {}

Apply and Run

Let's run it:

k -f 12.yaml create

Then we check the Deployment status where it shows 2/3 ready count:

- k -n project-tiger get deploy -1 id=very-important
NAME READY UP-TO-DATE AVAILABLE AGE
deploy-important 2/3 3 2 2m35s

And running the following we see one Pod on each worker node and one not scheduled.

- k -n project-tiger get pod -o wide -1 id=very-important

NAME READY STATUS C NODE
deploy-important-58db9db6fc-91jpw 2/2 Running - clusterl-workerl
deploy-important-58db9db6fc-Tnxdb 0/2 Pending L <none>
deploy-important-58db9db6fc-p2rz8 2/2 Running L clusterl-worker?2

If we kubectl describe the Pod deploy-important-58db9db6fc-T1nxdb it will show us the reason for not scheduling is our implemented
podAntiAffinity ruling:

warning Failedscheduling 63s (x3 over 65s) default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-
role.kubernetes.io/master: }, that the pod didn't tolerate, 2 node(s) didn't match pod affinity/anti-affinity, 2
node(s) didn't satisfy existing pods anti-affinity rules.

Or our topologySpreadConstraints:

warning FailedScheduling 16s default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-
role.kubernetes.io/master: }, that the pod didn't tolerate, 2 node(s) didn't match pod topology spread constraints.

Question 13 | Multi Containers and Pod shared Volume

Task weight: 4%
Use context: kubect1l config use-context k8s-cl-H

Create a Pod named multi-container-playground in Namespace default with three containers, named cl, c2 and c3. There should be a
volume attached to that Pod and mounted into every container, but the volume shouldn't be persisted or shared with other Pods.

Container cl should be of image nginx:1.17.6-alpine and have the name of the node where its Pod is running available as environment
variable MY_NODE_NAME.

Container c2 should be of image busybox:1.31.1 and write the output of the date command every second in the shared volume into file
date.Tlog.You can use while true; do date >> /your/vol/path/date.Tlog; sleep 1; done for this.

Container c3 should be of image busybox:1.31.1 and constantly send the content of file date.log from the shared volume to stdout. You
canuse tail -f /your/vol/path/date.log for this.

Check the logs of container c3 to confirm correct setup.

Answer:

First we create the Pod template:

k run multi-container-playground --image=nginx:1.17.6-alpine $do > 13.yaml

vim 13.yaml

And add the other containers and the commands they should execute:

13.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
run: multi-container-playground
name: multi-container-playground
spec:
containers:
- image: nginx:1.17.6-alpine
name: cl # change
resources: {}

env:
- name: MY_NODE_NAME
valueFrom:

fieldref:
fieldpPath: spec.nodeName
volumeMounts:
- name: vol
mountPath: /vol
- image: busybox:1.31.1
name: c2
command: ["sh", "-c", "while true; do date >> /vol/date.log; sleep 1; done"]
volumeMounts:
- name: vol
mountPath: /vol
- image: busybox:1.31.1
name: c3
command: ["sh", "-c", "tail -f /vol/date.log"]
volumeMounts:
- name: vol
mountPath: /vol
dnspPolicy: ClusterFirst
restartPolicy: Always

volumes:
- name: vol
emptyDir: {}
status: {}

k -f 13.yaml create
Oh boy, lot's of requested things. We check if everything is good with the Pod:

- k get pod multi-container-playground
NAME READY STATUS RESTARTS AGE
multi-container-playground 3/3 Running 0 95s

Good, then we check if container c1 has the requested node name as env variable:

- k exec multi-container-playground -c cl -- env | grep MY
MY_NODE_NAME=clusterl-worker2

And finally we check the logging:

= k logs multi-container-playground -c c3
Sat Dec 7 16:05:10 uTC 2077
Sat Dec 7 16:05:11 uTC 2077
Sat Dec 7 16:05:12 uTC 2077
Sat Dec 7 16:05:13 uTtC 2077
Sat Dec 7 16:05:14 uTtC 2077
Sat Dec 7 16:05:15 uTC 2077
Sat Dec 7 16:05:16 uTC 2077

Question 14 | Find out Cluster Information

Task weight: 2%
Use context: kubect1 config use-context k8s-cl-H

You're ask to find out following information about the cluster k8s-c1-H:

1. How many master nodes are available?

2. How many worker nodes are available?

3. What is the Service CIDR?

4. Which Networking (or CNI Plugin) is configured and where is its config file?
5. Which suffix will static pods have that run on cluster1-worker1?

Write your answers into file /opt/course/14/cluster-info, structured like this:

/opt/course/14/cluster-info

1: [ANSWER]
2: [ANSWER]
3: [ANSWER]
4: [ANSWER]
5: [ANSWER]

Answer:

FHOoH oH O H O O OH H OH H O OH W OH K H W H R R

HH

add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add

add
add
add

How many master and worker nodes are available?

We see one master and two workers.

What is the Service CIDR?

Which Networking (or CNI Plugin) is configured and where is its config file?

By default the kubelet looks into /etc/cni/net.d to discover the CNI plugins. This will be the same on every master and worker nodes.

Which suffix will static pods have that run on cluster1-worker1?

The suffix is the node hostname with a leading hyphen. It used to be -static in earlier Kubernetes versions.

Result
The resulting /opt/course/14/cluster-info could look like:
/opt/course/14/cluster-info

How many master nodes are available?
1: 1

HH

How many worker nodes are available?
2: 2

what is the Service CIDR?
3: 10.96.0.0/12

which Networking (or CNI Plugin) is configured and where is its config file?
4: weave, /etc/cni/net.d/10-weave.conflist

-

which suffix will static pods have that run on clusterl-workerl?
: -clusterl-workerl

v

Question 15 | Cluster Event Logging

Task weight: 3%
Use context: kubect1 config use-context k8s-c2-AC

Write a command into /opt/course/15/cluster_events.sh which shows the latest events in the whole cluster, ordered by time. Use

kubect1 for it.
Now kill the kube-proxy Pod running on node cluster2-worker1 and write the events this caused into /opt/course/15/pod_ki11.Tog.

Finally kill the containerd container of the kube-proxy Pod on node cluster2-worker1 and write the events into

/opt/course/15/container_kill.Tog.

Do you notice differences in the events both actions caused?

Answer:

/opt/course/15/cluster_events.sh
kubectl get events -A --sort-by=.metadata.creationTimestamp

Now we kill the kube-proxy Pod:

k -n kube-system get pod -o wide | grep proxy # find pod running on cluster2-workerl

k -n kube-system delete pod kube-proxy-z64cg

Now check the events:

sh /opt/course/15/cluster_events.sh

Write the events the killing caused into /opt/course/15/pod_kil11.%0g:

/opt/course/15/pod_kill.Tlog

kube-system 9s Normal Killing pod/kube-proxy-jsv7t
kube-system 3s Normal SuccessfulCreate daemonset/kube-proxy
kube-system <unknown> Normal Scheduled pod/kube-proxy-m52sx
default 2s Normal Starting node/cluster2-workerl
kube-system 2s Normal Created pod/kube-proxy-m52sx
kube-system 2s Normal Pulled pod/kube-proxy-m52sx
kube-system 2s Normal Started pod/kube-proxy-m52sx

Finally we will try to provoke events by killing the container belonging to the container of the kube-proxy Pod:

-> ssh cluster2-workerl

- root@cluster2-workerl:~# crictl ps | grep kube-proxy
1e020b43c4423 36c4ebbc9d979 About an hour ago Running kube-proxy

= root@cluster2-workerl:~# crictl rm 1e020b43c4423
1e020b43c4423

= root@cluster2-workerl:~# crictl ps | grep kube-proxy
0ae4245707910 36c4ebbc9d979 17 seconds ago Running kube-proxy

We killed the main container (1e020b43c4423), but also noticed that a new container (0ae4245707910) was directly created. Thanks
Kubernetes!

Now we see if this caused events again and we write those into the second file:

sh /opt/course/15/cTluster_events.sh

/opt/course/15/container_kill.log

kube-system 13s Normal Created pod/kube-proxy-m52sx
kube-system 13s Normal Pulled pod/kube-proxy-m52sx
kube-system 13s Normal Started pod/kube-proxy-m52sx

Comparing the events we see that when we deleted the whole Pod there were more things to be done, hence more events. For example was
the DaemonSet in the game to re-create the missing Pod. Where when we manually killed the main container of the Pod, the Pod would still
exist but only its container needed to be re-created, hence less events.

Question 16 | Namespaces and Api Resources

Task weight: 2%
Use context: kubectl config use-context k8s-cl-H

Create a new Namespace called cka-master .
Write the names of all namespaced Kubernetes resources (like Pod, Secret, ConfigMap...) into /opt/course/16/resources.txt.

Find the project-* Namespace with the highest number of Roles defined in it and write its name and amount of Roles into

/opt/course/16/crowded-namespace. txt.

Answer:

Namespace and Namespaces Resources

We create a new Namespace:

k create ns cka-master
Now we can get a list of all resources like:

k api-resources # shows all
k api-resources -h # help always good

k api-resources --namespaced -o name > /opt/course/16/resources.txt
Which results in the file:

/opt/course/16/resources.txt
bindings

configmaps

endpoints

events

Timitranges
persistentvolumeclaims

pods

podtemplates
replicationcontrollers
resourcequotas

secrets

serviceaccounts

services

controllerrevisions.apps
daemonsets.apps

deployments.apps

replicasets.apps
statefulsets.apps
localsubjectaccessreviews.authorization.k8s.1i0
horizontalpodautoscalers.autoscaling
cronjobs.batch

jobs.batch
Teases.coordination.k8s.i0
events.events.k8s.i0
ingresses.extensions
ingresses.networking.k8s.1i0
networkpolicies.networking.k8s.io
poddisruptionbudgets.policy
rolebindings.rbac.authorization.k8s.i0
roles.rbac.authorization.k8s.i0

Namespace with most Roles

= k -n project-cl3 get role --no-headers | wc -1
No resources found in project-cl3 namespace.
0

- k -n project-cl4 get role --no-headers | wc -1
300

- k -n project-hamster get role --no-headers | wc -1
No resources found in project-hamster namespace.
0

- k -n project-snake get role --no-headers | wc -1
No resources found in project-snake namespace.

0

- k -n project-tiger get role --no-headers | wc -1

No resources found in project-tiger namespace.
0

Finally we write the name and amount into the file:

/opt/course/16/crowded-namespace.txt
project-cl4 with 300 resources

Question 17 | Find Container of Pod and check info

Task weight: 3%

Use context: kubectl config use-context k8s-cl-H

In Namespace project-tiger create a Pod named tigers-reunite of image httpd:2.4.41-alpine with labels pod=container and

container=pod . Find out on which node the Pod is scheduled. Ssh into that node and find the containerd container belonging to that Pod.
Using command crictl:

1. Write the ID of the container and the info.runtimeType into /opt/course/17/pod-container.txt
2. Write the logs of the container into /opt/course/17/pod-container.log

Answer:

First we create the Pod:

Next we find out the node it's scheduled on:

or fancy:

Then we ssh into that node and and check the container info:

Then we fill the requested file (on the main terminal):

/opt/course/17/pod-container.txt
bO0ledbe6f89ed io.containerd.runc.v2

Finally we write the container logs in the second file:

The &> in above's command redirects both the standard output and standard error.

You could also simply run crict1 Togs on the node and copy the content manually, if its not a lot. The file should look like:

/opt/course/17/pod-container.log

AHO00558: httpd: Could not reliably determine the server's fully qualified domain name, using 10.44.0.37. Set the
'ServerName' directive globally to suppress this message

AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using 10.44.0.37. Set the
'ServerName' directive globally to suppress this message

[Mon sep 13 13:32:18.555280 2021] [mpm_event:notice] [pid 1:tid 139929534545224] AH00489: Apache/2.4.41 (Unix)
configured -- resuming normal operations

[Mon Sep 13 13:32:18.555610 2021] [core:notice] [pid 1:tid 139929534545224] AH00094: Command Tine: 'httpd -D
FOREGROUND'

Question 18 | Fix Kubelet

Task weight: 8%
Use context: kubect1 config use-context k8s-c3-ccC

There seems to be an issue with the kubelet not running on cluster3-workerl. Fix it and confirm that cluster has node cluster3-workerl

available in Ready state afterwards. You should be able to schedule a Pod on cluster3-workerl afterwards.

Write the reason of the issue into /opt/course/18/reason.txt.

Answer:

The procedure on tasks like these should be to check if the kubelet is running, if not start it, then check its logs and correct errors if there are
some.

Always helpful to check if other clusters already have some of the components defined and running, so you can copy and use existing config
files. Though in this case it might not need to be necessary.

Check node status:

- k get node

NAME STATUS ROLES AGE VERSION
cluster3-masterl Ready master 27h v1.23.1
cluster3-workerl NotReady <none> 26h v1.23.1

First we check if the kubelet is running:

= ssh cluster3-workerl

- root@cluster3-workerl:~# ps aux | grep kubelet
root 29294 0.0 0.2 14856 1016 pts/0 S+ 11:30 0:00 grep --color=auto kubelet

Nope, so we check if its configured using systemd as service:

- root@cluster3-workerl:~# service kubelet status
e kubelet.service - kubelet: The Kubernetes Node Agent
Loaded: Toaded (/1ib/systemd/system/kubelet.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/kubelet.service.d
L-10-kubeadm.conf
Active: 1inactive (dead) since Sun 2019-12-08 11:30:06 UTC; 50min 52s ago

Yes, its configured as a service with config at /etc/systemd/system/kubelet.service.d/10-kubeadm.conf, but we see its inactive. Let's try
to start it:

= root@cluster3-workerl:~# service kubelet start

- root@cluster3-workerl:~# service kubelet status
e kubelet.service - kubelet: The Kubernetes Node Agent
Loaded: loaded (/Tib/systemd/system/kubelet.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/kubelet.service.d
L-10-kubeadm. conf
Active: activating (auto-restart) (Result: exit-code) since Thu 2020-04-30 22:03:10 UTC; 3s ago
Docs: https://kubernetes.io/docs/home/

Process: 5989 ExecStart=/usr/local/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS
$KUBELET_EXTRA_ARGS (code=exited, status=203/EXEC)
Main PID: 5989 (code=exited, status=203/EXEC)

Apr 30 22:03:10 cluster3-workerl systemd[5989]: kubelet.service: Failed at step EXEC spawning /usr/local/bin/kubelet:
No such file or directory

Apr 30 22:03:10 cluster3-workerl systemd[1]: kubelet.service: Main process exited, code=exited, status=203/EXEC
Apr 30 22:03:10 cluster3-workerl systemd[1]: kubelet.service: Failed with result 'exit-code'.

We see its trying to execute /usr/local/bin/kubelet with some parameters defined in its service config file. A good way to find errors and
get more logs is to run the command manually (usually also with its parameters).

- root@cluster3-workerl:~# /usr/Tocal/bin/kubelet
-bash: /usr/local/bin/kubelet: No such file or directory

- root@cluster3-workerl:~# whereis kubelet
kubelet: /usr/bin/kubelet

Another way would be to see the extended logging of a service like using journalct] -u kubelet.

Well, there we have it, wrong path specified. Correct the path in file /etc/systemd/system/kubelet.service.d/10-kubeadm.conf and
run:

vim /etc/systemd/system/kubelet.service.d/10-kubeadm.conf # fix
systemct] daemon-reload && systemct] restart kubelet

systemct] status kubelet # should now show running

Also the node should be available for the api server, give it a bit of time though:

- k get node

NAME STATUS ROLES AGE VERSION
cluster3-masterl Ready master 27h v1l.23.1
cluster3-workerl Ready <none> 27h v1l.23.1

Finally we write the reason into the file:

/opt/course/18/reason.txt
wrong path to kubelet binary specified in service config

Question 19 | Create Secret and mount into Pod

Task weight: 3%
Use context: kubect1 config use-context k8s-c3-ccC

Do the following in a new Namespace secret . Create a Pod named secret-pod of image busybox:1.31.1 which should keep running for

some time. It should be able to run on master nodes as well, create the proper toleration.

There is an existing Secret located at /opt/course/19/secretl.yaml, create itin the secret Namespace and mount it readonly into the Pod
at /tmp/secretl.

Create a new Secret in Namespace secret called secret2 which should contain user=userl and pass=1234. These entries should be
available inside the Pod's container as environment variables APP_USER and APP_PASS.

Confirm everything is working.

Answer

First we create the Namespace and the requested Secrets in it:

k create ns secret
cp /opt/course/19/secretl.yaml 19_secretl.yaml

vim 19_secretl.yaml

We need to adjust the Namespace for that Secret:

19_secretl.yaml
apiversion: vl
data:
halt: IyeEgL2]pbi9zaAo...
kind: Secret
metadata:
creationTimestamp: null
name: secretl
namespace: secret # change

k -f 19_secretl.yaml create
Next we create the second Secret:

k -n secret create secret generic secret2 --from-literal=user=userl --from-1literal=pass=1234

Now we create the Pod template:

k -n secret run secret-pod --image=busybox:1.31.1 $do -- sh -c "sleep 5d" > 19.yaml

vim 19.yaml

Then make the necessary changes:

19.yaml

apiversion: vl

kind: Pod

metadata:
creationTimestamp: null
Tabels:

run: secret-pod

name: secret-pod

namespace: secret # add
spec:

tolerations: # add

- effect: NoSchedule # add

key: node-role.kubernetes.io/master # add
containers:
- args:

- sh

- -C

- sleep 1d

image: busybox:1.31.1

name: secret-pod

resources: {}

env: # add

- name: APP_USER # add

valueFrom: # add

secretKeyRef: # add

name: secret2 # add

key: user # add

- name: APP_PASS # add

valueFrom: # add

secretKeyRef: # add

name: secret2 # add

key: pass # add

volumeMounts: # add

- name: secretl # add

mountPath: /tmp/secretl # add

readonly: true # add
dnsPolicy: ClusterFirst

restartPolicy: Always

volumes: # add

- name: secretl # add

secret: # add

secretName: secretl # add

status: {}

It might not be necessary in current K8s versions to specify the readonly: true because it's the default setting anyways.

And execute:

k -f 19.yaml create

Finally we check if all is correct:

- k -n secret exec secret-pod -- env | grep APP
APP_PASS=1234
APP_USER=userl

- k -n secret exec secret-pod -- find /tmp/secretl
/tmp/secretl

/tmp/secretl/..data

/tmp/secretl/halt
/tmp/secretl/..2019_12_08_12_15_39.463036797
/tmp/secretl/..2019_12_08_12_15_39.463036797/halt

- k -n secret exec secret-pod -- cat /tmp/secretl/halt
#! /bin/sh

BEGIN INIT INFO

Provides: halt

Required-Start:

Required-Stop:

Default-Start:

Default-Stop: 0

Short-Description: Execute the halt command.

HOH OH OH OB W

Description:

All is good.

Question 20 | Update Kubernetes Version and join cluster

Task weight: 10%
Use context: kubectl config use-context k8s-c3-ccC

Your coworker said node cluster3-worker2 is running an older Kubernetes version and is not even part of the cluster. Update Kubernetes
on that node to the exact version that's running on cluster3-masterl. Then add this node to the cluster. Use kubeadm for this.

Answer:
Upgrade Kubernetes to cluster3-master1 version

Search in the docs for kubeadm upgrade: https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade

- k get node

NAME STATUS ROLES AGE VERSION
cluster3-masterl Ready control-plane,master 116m v1.23.1
cluster3-workerl NotReady <none> 112m v1.23.1

https://github.com/kubernetes/kubernetes/issues/62099
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade

Master node seems to be running Kubernetes 1.23.1 and cluster3-worker2 is not yet part of the cluster.

= ssh cluster3-worker?2

- root@cluster3-worker2:~# kubeadm version

kubeadm version: &version.Info{Major:"1", Minor:"23", Gitversion:"v1.23.1",
GitCommit:"86ec240af8chdlb60bcc4c03c20da9b98005b92e™, GitTreeState:"clean", BuildDate:"2021-12-16T11:39:51z",
Goversion:"gol.17.5", Compiler:"gc", Platform:"Tinux/amd64"}

- root@cluster3-worker2:~# kubect] version

Client Version: version.Info{Major:"1", Minor:"22", Gitversion:"v1.22.4",
GitCommit:"b695d79d41967c403a9698611750a35eb75e75f1", GitTreeState:"clean", BuildDate:"2021-11-17715:48:332",
Goversion:"gol.16.10", Compiler:"gc", Platform:"Tinux/amd64"}

The connection to the server Tocalhost:8080 was refused - did you specify the right host or port?

= root@cluster3-worker2:~# kubelet --version
Kubernetes v1.22.4

Here kubeadm is already installed in the wanted version, so we can run:

- root@cluster3-worker2:~# kubeadm upgrade node

couldn't create a Kubernetes client from file "/etc/kubernetes/kubelet.conf": failed to load admin kubeconfig: open
/etc/kubernetes/kubelet.conf: no such file or directory

To see the stack trace of this error execute with --v=5 or higher

This is usually the proper command to upgrade a node. But this error means that this node was never even initialised, so nothing to update
here. This will be done later using kubeadm join.For now we can continue with kubelet and kubectl:

- root@cluster3-worker2:~# apt update

Fetched 5,775 kB in 2s (2,313 kB/s)

Reading package Tists... Done

Building dependency tree

Reading state information... Done

90 packages can be upgraded. Run 'apt list --upgradable' to see them.

- root@cluster3-worker2:~# apt show kubect]l -a | grep 1.23

WARNING: apt does not have a stable CLI interface. Use with caution in scripts.
Version: 1.23.1-00

Version: 1.23.0-00

- root@cluster3-worker2:~# apt install kubect1=1.23.1-00 kubelet=1.23.1-00
Reading package Tists... Done
Building dependency tree
Reading state information... Done
The following packages will be upgraded:
kubectl kubelet
2 upgraded, 0 newly installed, O to remove and 88 not upgraded.
Need to get 28.4 MB of archives.
After this operation, 2,976 kB of additional disk space will be used.
Get:1 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 kubect]l amd64 1.23.1-00 [8,928 kB]
Get:2 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 kubelet amd64 1.23.1-00 [19.5 MB]
Fetched 28.4 MB in 2s (17.9 MB/s)
(Reading database ... 111951 files and directories currently installed.)
Preparing to unpack .../kubect]1_1.23.1-00_amd64.deb ...
Unpacking kubectl (1.23.1-00) over (1.22.4-00)
Preparing to unpack .../kubelet_1.23.1-00_amd64.deb ...
Unpacking kubelet (1.23.1-00) over (1.22.4-00)
Setting up kubectl (1.23.1-00)
Setting up kubelet (1.23.1-00)

= root@cluster3-worker2:~# kubelet --version
Kubernetes v1.23.1

Now we're up to date with kubeadm, kubectl and kubelet. Restart the kubelet:

- root@cluster3-worker2:~# systemct] restart kubelet

= root@cluster3-worker2:~# service kubelet status
XXX

We can ignore the errors and move into next step to generate the join command.

Add cluster3-master2 to cluster

First we log into the master1 and generate a new TLS bootstrap token, also printing out the join command:

- ssh cluster3-masterl

- root@cluster3-masterl:~# kubeadm token create --print-join-command
kubeadm join 192.168.100.31:6443 --token leqqll.lhlg4rw8mu7brv73 --discovery-token-ca-cert-hash
sha256:2e2c3407a256fc768f0d8e70974a8e24d7b9976149a79bd08858c4d7aa2ff79a

- root@cluster3-masterl:~# kubeadm token Tist
TOKEN TTL EXPIRES
mnkpfu.d21pu8zypbyumr3i 23h 2020-05-01122:43:452
poal3f.hnrs6i6ifetwii75 <forever> <never>

We see the expiration of 23h for our token, we could adjust this by passing the ttl argument.

Next we connect again to worker2 and simply execute the join command:

- ssh cluster3-worker?2

- root@cluster3-worker2:~# kubeadm join 192.168.100.31:6443 --token leqqll.lhlg4rw8mu7brv73 --discovery-token-
3c9cfl4535ebfac8a23a91132b75436b36df2c087aa99c433f79d531

[preflight] Running pre-flight checks

[preflight] Reading configuration from the cluster...

[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
w0107 13:37:31.116994 37798 utils.go:69] The recommended value for "resolvConf" in "KubeletConfiguration" is:
/run/systemd/resolve/resolv.conf; the provided value 1is: /run/systemd/resolve/resolv.conf

[kubeTet-start] writing kubelet configuration to file "/var/lib/kubelet/config.yaml"

[kubeTlet-start] writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet

[kubeTet-start] waiting for the kubelet to perform the TLS Bootstrap...

This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubect]l get nodes' on the control-plane to see this node join the cluster.

- root@cluster3-worker2:~# service kubelet status
e kubelet.service - kubelet: The Kubernetes Node Agent
Loaded: Toaded (/1ib/systemd/system/kubelet.service; enabled; vendor preset: enabled)
Drop-In: /etc/systemd/system/kubelet.service.d
L-10-kubeadm.conf
Active: active (running) since wed 2021-09-15 17:12:32 UTC; 42s ago
Docs: https://kubernetes.io/docs/home/
Main PID: 24771 (kubelet)
Tasks: 13 (limit: 467)
Memory: 68.0M
CGroup: /system.slice/kubelet.service
L-24771 /usr/bin/kubelet --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --
kubeconfig=/etc/kuber>

If you have troubles with kubeadm join you might need to run kubeadm reset.

This looks great though for us. Finally we head back to the main terminal and check the node status:

- k get node

NAME STATUS ROLES AGE VERSION
cluster3-masterl Ready control-plane,master 24h v1.23.1
cluster3-workerl Ready <none> 24h vl.23.1
cluster3-worker?2 NotReady <none> 32s vl.23.1

Give it a bit of time till the node is ready.

- k get node

NAME STATUS ROLES AGE VERSION
cluster3-masterl Ready control-plane,master 24h v1l.23.1
cluster3-workerl Ready <none> 24h vl.23.1
cluster3-worker?2 Ready <none> 107s v1l.23.1

We see cluster3-worker2 is now available and up to date.

Question 21 | Create a Static Pod and Service

Task weight: 2%

Use context: kubect1 config use-context k8s-c3-ccC

Create a static pod named my-static-pod in Namespace default on cluster3-master1. It should be of image nginx:1.16-alpine and
have resource requests for 10m CPU and 20Mi memory.

Then create a NodePort Service named static-pod-service which exposes that static Pod on port 80 and check if it has Endpoints and if its
reachable through the cluster3-masterl internal IP address. You can connect to the internal node IPs from your main terminal.

Answer:

- ssh cluster3-masterl
= root@clusterl-masterl:~# cd /etc/kubernetes/manifests/

- root@clusterl-masterl:~# kubect]l run my-static-pod \
--image=nginx:1.16-alpine \

-0 yaml --dry-run=cTlient > my-static-pod.yaml
Then edit the my-static-pod.yaml to add the requested resource requests:

/etc/kubernetes/manifests/my-static-pod.yam]l
apiversion: vl

kind: Pod

metadata:

creationTimestamp: null

Tabels:
run: my-static-pod

name: my-static-pod

spec:

containers:

- image: nginx:1.16-alpine
name: my-static-pod
resources:

requests:
cpu: 10m
memory: 20Mi
dnsPolicy: ClusterFirst
restartPolicy: Always
status: {}

And make sure its running:

- k get pod -A | grep my-static
NAMESPACE NAME READY STATUS S AGE
default my-static-pod-cluster3-masterl 1/1 Running ... 22s

Now we expose that static Pod:

k expose pod my-static-pod-cluster3-masterl \
--name static-pod-service \
--type=NodePort \
--port 80

This would generate a Service like:

kubectl expose pod my-static-pod-cluster3-masterl --name static-pod-service --type=NodePort --port 80
apiversion: vl
kind: Service
metadata:
creationTimestamp: null
Tabels:
run: my-static-pod
name: static-pod-service
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
run: my-static-pod
type: NodePort
status:
loadBalancer: {}

Then run and test:

- k get svc,ep -1 run=my-static-pod

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/static-pod-service NodePort 10.99.168.252 <none> 80:30352/TCP 30s
NAME ENDPOINTS AGE

endpoints/static-pod-service 10.32.0.4:80 30s

Looking good.

Question 22 | Check how long certificates are valid

Task weight: 2%
Use context: kubect1 config use-context k8s-c2-AC

Check how long the kube-apiserver server certificate is valid on cluster2-masterl. Do this with openssl| or cfssl. Write the exipiration date
into /opt/course/22/expiration.

Also run the correct kubeadm command to list the expiration dates and confirm both methods show the same date.

Write the correct kubeadm command that would renew the apiserver server certificate into /opt/course/22/kubeadm-renew-certs.sh.

Answer:

First let's find that certificate:

- ssh cluster2-masterl

- root@cluster2-masterl:~# find /etc/kubernetes/pki | grep apiserver
/etc/kubernetes/pki/apiserver.crt
/etc/kubernetes/pki/apiserver-etcd-client.crt
/etc/kubernetes/pki/apiserver-etcd-client.key
/etc/kubernetes/pki/apiserver-kubelet-client.crt
/etc/kubernetes/pki/apiserver.key
/etc/kubernetes/pki/apiserver-kubelet-client.key

Next we use openssl to find out the expiration date:
= root@cluster2-masterl:~# openssl x509 -noout -text -in /etc/kubernetes/pki/apiserver.crt | grep validity -A2
validity

Not Before: Jan 14 18:18:15 2021 GMT
Not After : Jan 14 18:49:40 2022 GMT

There we have it, so we write it in the required location on our main terminal:

/opt/course/22/expiration
Jan 14 18:49:40 2022 GMT

And we use the feature from kubeadm to get the expiration too:

- root@cluster2-masterl:~# kubeadm certs check-expiration | grep apiserver

apiserver Jan 14, 2022 18:49 uTC 363d ca no
apiserver-etcd-client Jan 14, 2022 18:49 UTC 363d etcd-ca no
apiserver-kubelet-client Jan 14, 2022 18:49 UTC 363d ca no

Looking good. And finally we write the command that would renew all certificates into the requested location:

/opt/course/22/kubeadm-renew-certs.sh
kubeadm certs renew apiserver

Question 23 | Kubelet client/server cert info

Task weight: 2%
Use context: kubect1 config use-context k8s-c2-AC

Node cluster2-worker1 has been added to the cluster using kubeadm and TLS bootstrapping.

Find the "Issuer" and "Extended Key Usage" values of the cluster2-worker1:

1. kubelet client certificate, the one used for outgoing connections to the kube-apiserver.
2. kubelet server certificate, the one used for incoming connections from the kube-apiserver.

Write the information into file /opt/course/23/certificate-info.txt.

Compare the "Issuer" and "Extended Key Usage" fields of both certificates and make sense of these.

Answer:

To find the correct kubelet certificate directory, we can look for the default value of the --cert-dir parameter for the kubelet. For this search

for "kubelet" in the Kubernetes docs which will lead to: https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet. We can
check if another certificate directory has been configured using ps aux orin /etc/systemd/system/kubelet.service.d/10-kubeadm.conf.

First we check the kubelet client certificate:

- ssh cluster2-workerl

= root@cluster2-workerl:~# openssl x509 -noout -text -in /var/lib/kubelet/pki/kubelet-client-current.pem | grep
Issuer

Issuer: CN = kubernetes

- root@cluster2-workerl:~# openssl x509 -noout -text -in /var/lib/kubelet/pki/kubelet-client-current.pem | grep
"Extended Key Usage" -Al
X509v3 Extended Key Usage:
TLS wWeb Client Authentication

Next we check the kubelet server certificate:

- root@cluster2-workerl:~# openssl x509 -noout -text -in /var/lib/kubelet/pki/kubelet.crt | grep Issuer
Issuer: CN = cluster2-workerl-ca@1588186506

- root@cluster2-workerl:~# openssl x509 -noout -text -in /var/lib/kubelet/pki/kubelet.crt | grep "Extended Key Usage"
-Al
X509v3 Extended Key Usage:
TLS Web Server Authentication

We see that the server certificate was generated on the worker node itself and the client certificate was issued by the Kubernetes api. The
"Extended Key Usage" also shows if its for client or server authentication.

More about this: https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping

Question 24 | NetworkPolicy

Task weight: 9%
Use context: kubectl config use-context k8s-cl-H

There was a security incident where an intruder was able to access the whole cluster from a single hacked backend Pod.
To prevent this create a NetworkPolicy called np-backend in Namespace project-snake . It should allow the backend-* Pods only to:

e connectto dbl-* Pods on port 1111
e connectto db2-* Pods on port 2222

Use the app label of Pods in your policy.

After implementation, connections from backend-* Pods to vault-* Pods on port 3333 should for example no longer work.

Answer:

First we look at the existing Pods and their labels:

- k -n project-snake get pod

NAME READY STATUS RESTARTS AGE
backend-0 1/1 Running 0 8s
db1-0 1/1 Running 0 8s
db2-0 1/1 Running 0 10s
vault-0 1/1 Running 0 10s

- k -n project-snake get pod -L app

NAME READY STATUS RESTARTS AGE APP
backend-0 1/1 Running 0 3ml5s backend
db1-0 1/1 Running 0 3ml5s db1l
db2-0 1/1 Running 0 3ml7s db2
vault-0 1/1 Running 0 3ml7s vault

We test the current connection situation and see nothing is restricted:

- k -n project-snake get pod -o wide

NAME READY STATUS RESTARTS AGE IP
backend-0 1/1 Running O 4ml4s 10.44.0.24
db1-0 1/1 Running 0 4ml4s 10.44.0.25

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping

db2-0 1/1 Running 0 4ml6s 10.44.0.23
vault-0 1/1 Running 0 4ml6s 10.44.0.22

- k -n project-snake exec backend-0 -- curl -s 10.44.0.25:1111
database one

- k -n project-snake exec backend-0 -- curl -s 10.44.0.23:2222
database two

- k -n project-snake exec backend-0 -- curl -s 10.44.0.22:3333
vault secret storage

Now we create the NP by copying and chaning an example from the k8s docs:

vim 24_np.yaml

24_np.yaml
apiversion: networking.k8s.io/vl
kind: NetworkpoTicy
metadata:
name: np-backend
namespace: project-snake
spec:
podselector:
matchLabels:
app: backend
policyTypes:
- Egress # policy is only about Egress
egress:
- # first rule
to: # first condition "to"
- podselector:
matchLabels:

app: dbl
ports: # second condition "port"
- protocol: TCP
port: 1111
- # second rule
to: # first condition "to"
- podselector:
matchLabels:
app: db2
ports: # second condition "port"
- protocol: TCP
port: 2222

The NP above has two rules with two conditions each, it can be read as:

allow outgoing traffic if:

(destination pod has label app=dbl AND port 1is 1111)
OR

(destination pod has label app=db2 AND port is 2222)

Wrong example

Now let's shortly look at a wrong example:

WRONG
apiversion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: np-backend

namespace: project-snake
spec:

podSelector:

matchLabels:
app: backend

policyTypes:
- Egress
egress:
- # first rule
to: # first condition "to"
- podselector: # first "to" possibility
matchLabels:
app: dbl
- podselector: # second "to" possibility
matchLabels:
app: db2
ports: # second condition "ports"
- protocol: TCP # first "ports" possibility
port: 1111
- protocol: TCP # second "ports" possibility
port: 2222

The NP above has one rule with two conditions and two condition-entries each, it can be read as:

allow outgoing traffic if:

(destination pod has label app=dbl OR destination pod has label app=db2)
AND

(destination port is 1111 OR destination port is 2222)

Using this NP it would still be possible for backend-* Pods to connect to db2-* Pods on port 1111 for example which should be forbidden.

Create NetworkPolicy

We create the correct NP:
k -f 24_np.yaml create
And test again:

- k -n project-snake exec backend-0 -- curl -s 10.44.0.25:1111
database one

- k -n project-snake exec backend-0 -- curl -s 10.44.0.23:2222
database two

- k -n project-snake exec backend-0 -- curl -s 10.44.0.22:3333
AC

Also helpful to use kubect1 describe on the NP to see how k8s has interpreted the policy.

Great, looking more secure. Task done.

Question 25 | Etcd Snapshot Save and Restore

Task weight: 8%
Use context: kubect1 config use-context k8s-c3-cccC

Make a backup of etcd running on cluster3-master1 and save it on the master node at /tmp/etcd-backup.db.
Then create a Pod of your kind in the cluster.

Finally restore the backup, confirm the cluster is still working and that the created Pod is no longer with us.

Answer:
Etcd Backup

First we log into the master and try to create a snapshop of etcd:

= ssh cluster3-masterl

- root@cluster3-masterl:~# ETCDCTL_API=3 etcdct] snapshot save /tmp/etcd-backup.db
Error: rpc error: code = Unavailable desc = transport is closing

But it fails because we need to authenticate ourselves. For the necessary information we can check the etc manifest:

- root@cluster3-masterl:~# vim /etc/kubernetes/manifests/etcd.yaml

We only check the etcd.yaml for necessary information we don't change it.

/etc/kubernetes/manifests/etcd.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
component: etcd
tier: control-plane
name: etcd
namespace: kube-system
spec:
containers:
- command:
- etcd
- --advertise-client-urls=https://192.168.100.31:2379
- --cert-file=/etc/kubernetes/pki/etcd/server.crt # use
--client-cert-auth=true
- --data-dir=/var/1lib/etcd
- --initial-advertise-peer-urls=https://192.168.100.31:2380

- --initial-cluster=cluster3-masterl=https://192.168.100.31:2380
- --key-file=/etc/kubernetes/pki/etcd/server.key # use
- --Tisten-client-urls=https://127.0.0.1:2379,https://192.168.100.31:2379 # use
- --Tisten-metrics-urls=http://127.0.0.1:2381
- --Tisten-peer-urls=https://192.168.100.31:2380
- --name=cluster3-masterl
- --peer-cert-file=/etc/kubernetes/pki/etcd/peer.crt
- --peer-client-cert-auth=true
- --peer-key-file=/etc/kubernetes/pki/etcd/peer.key
- --peer-trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt # use
- --snapshot-count=10000
- --trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt
image: k8s.gcr.io/etcd:3.3.15-0
imagePullPolicy: IfNotPresent
TivenessProbe:
failureThreshold: 8
httpGet:
host: 127.0.0.1
path: /health
port: 2381
scheme: HTTP
initialbelaySeconds: 15
timeoutSeconds: 15
name: etcd
resources: {}
volumeMounts:
- mountPath: /var/lib/etcd
name: etcd-data
- mountPath: /etc/kubernetes/pki/etcd
name: etcd-certs
hostNetwork: true
priorityClassName: system-cluster-critical
volumes:
- hostpPath:
path: /etc/kubernetes/pki/etcd
type: DirectoryOrCreate
name: etcd-certs
- hostpPath:
path: /var/Tlib/etcd # important
type: DirectoryOrCreate
name: etcd-data
status: {}

But we also know that the api-server is connecting to etcd, so we can check how its manifest is configured:

- root@cluster3-masterl:~# cat /etc/kubernetes/manifests/kube-apiserver.yaml | grep etcd
- --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt
- --etcd-certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt
- --etcd-keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key
- --etcd-servers=https://127.0.0.1:2379

We use the authentication information and pass it to etcdctl:

- root@cluster3-masterl:~# ETCDCTL_API=3 etcdct] snapshot save /tmp/etcd-backup.db \
--cacert /etc/kubernetes/pki/etcd/ca.crt \

--cert /etc/kubernetes/pki/etcd/server.crt \

--key /etc/kubernetes/pki/etcd/server.key

Snapshot saved at /tmp/etcd-backup.db

NOTE: Dont use snapshot status because it can alter the snapshot file and render it invalid

Etcd restore

Now create a Pod in the cluster and wait for it to be running:

- root@cluster3-masterl:~# kubect] run test --image=nginx
pod/test created

- root@cluster3-masterl:~# kubectl get pod -1 run=test -w
NAME READY STATUS RESTARTS AGE
test 1/1 Running 0 60s

NOTE: If you didn't solve questions 18 or 20 and cluster3 doesn't have a ready worker node then the created pod might stay in a
Pending state. This is still ok for this task.

Next we stop all controlplane components:

root@cluster3-masterl:~# cd /etc/kubernetes/manifests/
root@cluster3-masterl:/etc/kubernetes/manifests# mv *

root@cluster3-masterl:/etc/kubernetes/manifests# watch crictl ps
Now we restore the snapshot into a specific directory:

- root@cluster3-masterl:~# ETCDCTL_API=3 etcdct] snapshot restore /tmp/etcd-backup.db \
--data-dir /var/lib/etcd-backup \

--cacert /etc/kubernetes/pki/etcd/ca.crt \

--cert /etc/kubernetes/pki/etcd/server.crt \

--key /etc/kubernetes/pki/etcd/server.key

2020-09-04 16:50:19.650804 I | mvcc: restore compact to 9935
2020-09-04 16:50:19.659095 I | etcdserver/membership: added member 8e9e05c52164694d [http://localhost:2380] to cluster
cdf818194e3a8c32

We could specify another host to make the backup from by using etcdctl --endpoints http://IP, but here we just use the default value
which is: http://127.0.0.1:2379,http://127.0.0.1:4001.

The restored files are located at the new folder /var/1ib/etcd-backup, now we have to tell etcd to use that directory:

- root@cluster3-masterl:~# vim /etc/kubernetes/etcd.yaml

/etc/kubernetes/etcd.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
component: etcd
tier: control-plane
name: etcd
namespace: kube-system
spec:

- mountPath: /etc/kubernetes/pki/etcd
name: etcd-certs
hostNetwork: true
priorityClassName: system-cluster-critical
volumes:
- hostPath:
path: /etc/kubernetes/pki/etcd
type: DirectoryOrCreate
name: etcd-certs
- hostpPath:
path: /var/1ib/etcd-backup # change
type: DirectoryOrCreate
name: etcd-data
status: {}

Now we move all controlplane yaml again into the manifest directory. Give it some time (up to several minutes) for etcd to restart and for the
api-server to be reachable again:

root@cluster3-masterl:/etc/kubernetes/manifests# mv ../*.yaml

root@cluster3-masterl:/etc/kubernetes/manifests# watch crictl ps

Then we check again for the Pod:

= root@cluster3-masterl:~# kubectl get pod -T run=test
No resources found in default namespace.

Awesome, backup and restore worked as our pod is gone.

Extra Question 1 | Find Pods first to be terminated

Use context: kubect1 config use-context k8s-cl-H

Check all available Pods in the Namespace project-c13 and find the names of those that would probably be terminated first if the nodes run
out of resources (cpu or memory) to schedule all Pods. Write the Pod names into /opt/course/el/pods-not-stable.txt.

Answer:

When available cpu or memory resources on the nodes reach their limit, Kubernetes will look for Pods that are using more resources than
they requested. These will be the first candidates for termination. If some Pods containers have no resource requests/limits set, then by
default those are considered to use more than requested.

Kubernetes assigns Quality of Service classes to Pods based on the defined resources and limits, read more here: https://kubernetes.io/docs/t
asks/configure-pod-container/quality-service-pod

Hence we should look for Pods without resource requests defined, we can do this with a manual approach:

k -n project-cl3 describe pod | less -p Requests # describe all pods and highlight Requests

Or we do:

k -n project-cl3 describe pod | egrep "A(Name: | Requests:)" -Al

We see that the Pods of Deployment c13-3cc-runner-heavy don't have any resources requests specified. Hence our answer would be:

/opt/course/el/pods-not-stable.txt
cl3-3cc-runner-heavy-65588d7d6-djtv9map
cl3-3cc-runner-heavy-65588d7d6-v8kf5map
cl3-3cc-runner-heavy-65588d7d6-wwpb4map

03db-0

03db-1 # maybe not existing if already removed via previous scenario

To automate this process you could use jsonpath like this:

- k -n project-cl3 get pod \
-0 jsonpath="{range .items[*]} {.metadata.name}{.spec.containers[*].resources}{'\n'}"

c13-2x3-api-86784557bd-cgs8gmap[requests:map[cpu:50m memory:20Mi]]
c13-2x3-api-86784557bd-Tnxvjmap[requests:map[cpu:50m memory:20Mi]]
c13-2x3-api-86784557bd-mnp77map[requests:map[cpu:50m memory:20Mi]]
c13-2x3-web-769c989898-6hbgtmap[requests:map[cpu:50m memory:10Mi]]
c13-2x3-web-769c989898-g57ngmap[requests:map[cpu:50m memory:10Mi]]
c13-2x3-web-769c989898-hfd5vmap[requests:map[cpu:50m memory:10Mi]]
c13-2x3-web-769c989898-jfx64map[requests:map[cpu:50m memory:10Mi]]
c13-2x3-web-769c989898-r89mgmap[requests:map[cpu:50m memory:10Mi]]
c13-2x3-web-769c989898-wtgxImap[requests:map[cpu:50m memory:10Mi]]
c13-3cc-runner-98c8b5469-dzghrmap[requests:map[cpu:30m memory:10Mi]]
cl3-3cc-runner-98c8b5469-hbtdvmap[requests:map[cpu:30m memory:10Mi]]
c13-3cc-runner-98c8b5469-n91swmap[requests:map[cpu:30m memory:10Mi]]
cl3-3cc-runner-heavy-65588d7d6-djtv9map[]
cl13-3cc-runner-heavy-65588d7d6-v8kfSmap[]
cl13-3cc-runner-heavy-65588d7d6-wwpb4map[]
c13-3cc-web-675456bcd-glpgbmap[requests:map[cpu:50m memory:10Mi]]
cl13-3cc-web-675456bcd-knlpxmap[requests:map[cpu:50m memory:10Mi]]
c13-3cc-web-675456bcd-nfhp9map[requests:map[cpu:50m memory:10Mi]]
c13-3cc-web-675456bcd-twn7mmap[requests:map[cpu:50m memory:10Mi]]
03db-0{}

03db-1{}

This lists all Pod names and their requests/limits, hence we see the three Pods without those defined.

Or we look for the Quality of Service classes:

- k get pods -n project-cl3 \
-0 jsonpath="{range .items[*]}{.metadata.name} {.status.qgosClass}{'\n'}"

c13-2x3-api-86784557bd-cgs8g Burstable
c13-2x3-api-86784557bd-Tnxvj Burstable
c13-2x3-api-86784557bd-mnp77 Burstable
c13-2x3-web-769c989898-6hbgt Burstable
c13-2x3-web-769c989898-g57ng Burstable
c13-2x3-web-769c989898-hfd5v Burstable
c13-2x3-web-769c989898-jfx64 Burstable
c13-2x3-web-769c989898-r89mg Burstable
c13-2x3-web-769c989898-wtgx1 Burstable
c13-3cc-runner-98c8b5469-dzghr Burstable
cl3-3cc-runner-98c8b5469-hbtdv Burstable
c13-3cc-runner-98c8b5469-n91sw Burstable
cl3-3cc-runner-heavy-65588d7d6-djtv9 BestEffort
cl3-3cc-runner-heavy-65588d7d6-v8kf5 BestEffort
cl3-3cc-runner-heavy-65588d7d6-wwpb4 BestEffort
c13-3cc-web-675456bcd-glpg6 Burstable
c13-3cc-web-675456bcd-knTpx Burstable
c13-3cc-web-675456bcd-nfhp9 Burstable
c13-3cc-web-675456bcd-twn7m Burstable

03db-0 BestEffort

03db-1 BestEffort

Here we see three with BestEffort, which Pods get that don't have any memory or cpu limits or requests defined.

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod

A good practice is to always set resource requests and limits. If you don't know the values your containers should have you can find this out
using metric tools like Prometheus. You can also use kubect1 top pod or even kubectl exec into the container and use top and similar
tools.

Extra Question 2 | Curl Manually Contact API

Use context: kubectl config use-context k8s-cl-H

There is an existing ServiceAccount secret-reader in Namespace project-hamster . Create a Pod of image curlimages/curl:7.65.3 named
tmp-api-contact which uses this ServiceAccount. Make sure the container keeps running.

Exec into the Pod and use curl to access the Kubernetes Api of that cluster manually, listing all available secrets. You can ignore insecure
https connection. Write the command(s) for this into file /opt/course/e4/1ist-secrets.sh.

Answer:

https://kubernetes.io/docs/tasks/run-application/access-api-from-pod

It's important to understand how the Kubernetes APl works. For this it helps connecting to the api manually, for example using curl. You can
find information fast by search in the Kubernetes docs for "curl api" for example.

First we create our Pod:

k run tmp-api-contact \
--image=curlimages/curl:7.65.3 $do \
--command > e2.yaml -- sh -c 'sleep 1d'

vim e2.yaml

Add the service account name and Namespace:

e2.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
run: tmp-api-contact
name: tmp-api-contact
namespace: project-hamster # add
spec:
serviceAccountName: secret-reader # add
containers:
- command:
- sh
- -C
- sleep 1d
image: curlimages/curl:7.65.3
name: tmp-api-contact
resources: {}
dnsPolicy: ClusterFirst
restartPolicy: Always
status: {}

Then run and exec into:

k -f 6.yam]l create

k -n project-hamster exec tmp-api-contact -it -- sh

Once on the container we can try to connect to the api using curl, the api is usually available via the Service named kubernetes in

Namespace default (You should know how dns resolution works across Namespaces.). Else we can find the endpoint IP via environment
variables running env .

So now we can do:
curl https://kubernetes.default

curl -k https://kubernetes.default # ignore insecure as allowed in ticket description
curl -k https://kubernetes.default/api/vl/secrets # should show Forbidden 403

The last command shows 403 forbidden, this is because we are not passing any authorisation information with us. The Kubernetes Api Server
thinks we are connecting as system:anonymous . We want to change this and connect using the Pods ServiceAccount named secret-reader .
We find the the token in the mounted folder at /var/run/secrets/kubernetes.io/serviceaccount, SO we do:

- TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)

= curl -k https://kubernetes.default/api/vl/secrets -H "Authorization: Bearer ${TOKEN}"
% Total % Received % Xferd Average Speed Time Time Time Current

https://kubernetes.io/docs/tasks/run-application/access-api-from-pod

Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 ——:1——1—- ——1-—1-- ——1--1-- 0{
"kind": "SecretList",
"apiversion": "v1",
"metadata": {
"selfLink": "/api/vl/secrets",
"resourceversion": "10697"
1,
"items": [
{
"metadata": {
"name": "default-token-5zjbd",
"namespace": "default",
"selfLink": "/api/vl/namespaces/default/secrets/default-token-5zjbd",
"uid": "315dbfd9-d235-482b-8bfc-c6167e7cl461",
"resourceversion": "342",

Now we're able to list all Secrets, registering as the ServiceAccount secret-reader under which our Pod is running.

To use encrypted https connection we can run:

CACERT=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
curl --cacert ${CACERT} https://kubernetes.default/api/vl/secrets -H "Authorization: Bearer ${TOKEN}

n

For troubleshooting we could also check if the ServiceAccount is actually able to list Secrets using:

- k auth can-i get secret --as system:serviceaccount:project-hamster:secret-reader
yes

Finally write the commands into the requested location:

/opt/course/e4/Tist-secrets.sh
TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)
curl -k https://kubernetes.default/api/vl/secrets -H "Authorization: Bearer ${TOKEN}"

CKA Simulator Preview Kubernetes 1.23

https://killer.sh
This is a preview of the full CKA Simulator course content.

The full course contains 25 scenarios from all the CKA areas. The course also provides a browser terminal which is a very close replica of the
original one. This is great to get used and comfortable before the real exam. After the test session (120 minutes), or if you stop it early, you'll
get access to all questions and their detailed solutions. You'll have 36 hours cluster access in total which means even after the session, once

you have the solutions, you can still play around.

The following preview will give you an idea of what the full course will provide. These preview questions are in addition to the 25 of the full
course. But the preview questions are part of the same CKA simulation environment which we setup for you, so with access to the full course

you can solve these too.

The answers provided here assume that you did run the initial terminal setup suggestions as provided in the tips section, but especially:

alias k=kubect]

export do="-o0 yaml --dry-run=client"

These questions can be solved in the test environment provided through the CKA Simulator

Preview Question 1

Use context: kubect] config use-context k8s-c2-AC
The cluster admin asked you to find out the following information about etcd running on cluster2-master1:

e Server private key location
e Server certificate expiration date
e |s client certificate authentication enabled

Write these information into /opt/course/pl/etcd-info.txt

Finally you're asked to save an etcd snapshot at /etc/etcd-snapshot.db on cluster2-master1 and display its status.

Answer:

https://killer.sh/

Find out etcd information

Let's check the nodes:

- k get node

NAME STATUS ROLES AGE VERSION
cluster2-masterl Ready master 89m v1.23.1
cluster2-workerl Ready <none> 87m v1.23.1

= ssh cluster2-masterl

First we check how etcd is setup in this cluster:

- root@cluster2-masterl:~# kubectl -n kube-system get pod

NAME READY STATUS RESTARTS AGE
coredns-66bff4678-k8f48 1/1 Running 0 26h
coredns-66bff467f8-rn8tr 1/1 Running 0 26h
etcd-cluster2-masterl 1/1 Running 0 26h
kube-apiserver-cluster2-masterl 1/1 Running 0 26h
kube-controller-manager-cluster2-masterl 1/1 Running 0 26h
kube-proxy-qthfg 1/1 Running 0 25h
kube-proxy-z551p 1/1 Running O 26h
kube-scheduler-cluster2-masterl 1/1 Running 1 26h
weave-net-cqdvt 2/2 Running 0 26h
weave-net-dxzgh 2/2 Running 1 25h

We see its running as a Pod, more specific a static Pod. So we check for the default kubelet directory for static manifests:

= root@cluster2-masterl:~# find /etc/kubernetes/manifests/
/etc/kubernetes/manifests/
/etc/kubernetes/manifests/kube-controller-manager.yaml
/etc/kubernetes/manifests/kube-apiserver.yaml
/etc/kubernetes/manifests/etcd.yaml
/etc/kubernetes/manifests/kube-scheduler.yaml

- root@cluster2-masterl:~# vim /etc/kubernetes/manifests/etcd.yaml

So we look at the yaml and the parameters with which etcd is started:

/etc/kubernetes/manifests/etcd.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
component: etcd
tier: control-plane
name: etcd
namespace: kube-system
spec:
containers:
- command:
- etcd
- --advertise-client-urls=https://192.168.102.11:2379
- --cert-file=/etc/kubernetes/pki/etcd/server.crt # server certificate
--client-cert-auth=true # enabled
--data-dir=/var/lib/etcd
--initial-advertise-peer-urls=https://192.168.102.11:2380
--initial-cluster=cluster2-masterl=https://192.168.102.11:2380
--key-file=/etc/kubernetes/pki/etcd/server.key # server private key
--Tisten-client-urls=https://127.0.0.1:2379,https://192.168.102.11:2379
--Tisten-metrics-urls=http://127.0.0.1:2381
--listen-peer-urls=https://192.168.102.11:2380
- --name=cluster2-masterl
--peer-cert-file=/etc/kubernetes/pki/etcd/peer.crt
--peer-client-cert-auth=true
- --peer-key-file=/etc/kubernetes/pki/etcd/peer.key
--peer-trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt
--snapshot-count=10000
- --trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt

We see that client authentication is enabled and also the requested path to the server private key, now let's find out the expiration of the
server certificate:

= root@cluster2-masterl:~# openssl x509 -noout -text -in /etc/kubernetes/pki/etcd/server.crt | grep validity -A2
validity
Not Before: Sep 13 13:01:31 2021 GMT
Not After : Sep 13 13:01:31 2022 GMT

There we have it. Let's write the information into the requested file:

/opt/course/pl/etcd-info.txt

Server private key location: /etc/kubernetes/pki/etcd/server.key
Server certificate expiration date: Sep 13 13:01:31 2022 GMT

Is client certificate authentication enabled: yes

Create etcd snapshot

First we try:
ETCDCTL_API=3 etcdctl snapshot save /etc/etcd-snhapshot.db
We get the endpoint also from the yaml. But we need to specify more parameters, all of which we can find the yaml declaration above:

ETCDCTL_API=3 etcdctl snapshot save /etc/etcd-snapshot.db \
--cacert /etc/kubernetes/pki/etcd/ca.crt \

--cert /etc/kubernetes/pki/etcd/server.crt \

--key /etc/kubernetes/pki/etcd/server.key

This worked. Now we can output the status of the backup file:

- root@cluster2-masterl:~# ETCDCTL_API=3 etcdct] snapshot status /etc/etcd-snapshot.db
4d4e953, 7213, 1291, 2.7 MB
The status shows:

e Hash: 4d4e953
e Revision: 7213

e Total Keys: 1291
e Total Size: 2.7 MB

Preview Question 2

Use context: kubect1 config use-context k8s-cl-H

You're asked to confirm that kube-proxy is running correctly on all nodes. For this perform the following in Namespace project-hamster:

Create a new Pod named p2-pod with two containers, one of image nginx:1.21.3-alpine and one of image busybox:1.31. Make sure the

busybox container keeps running for some time.
Create a new Service named p2-service which exposes that Pod internally in the cluster on port 3000->80.

Find the kube-proxy container on all nodes clusterl-masterl, clusterl-workerl and clusterl-worker2 and make sure thatit's using
iptables. Use command crict1 for this.

Write the iptables rules of all nodes belonging the created Service p2-service into file /opt/course/p2/iptables.txt.

Finally delete the Service and confirm that the iptables rules are gone from all nodes.

Answer:
Create the Pod

First we create the Pod:

check out export statement on top which allows us to use $do
k run p2-pod --image=nginx:1.21.3-alpine $do > p2.yaml

vim p2.yaml

Next we add the requested second container:

p2.yaml
apiversion: vl
kind: Pod
metadata:

creationTimestamp: null

Tabels:

run: p2-pod

name: p2-pod

namespace: project-hamster # add
spec:

containers:
- image: nginx:1.21.3-alpine

name: p2-pod
- image: busybox:1.31 # add
name: c2 # add

command: ["sh", "-c", "sleep 1d"] # add

resources: {}
dnsPolicy: ClusterFirst
restartPolicy: Always
status: {}

And we create the Pod:

k -f p2.yaml create

Create the Service

Next we create the Service:

k -n project-hamster expose pod p2-pod --name p2-service --port 3000 --target-port 80

This will create a yaml like:

apiversion: vl
kind: Service
metadata:
creationTimestamp: "2020-04-30T20:58:14z"
Tabels:
run: p2-pod
managedFields:

operation: Update
time: "2020-04-30720:58:14z"
name: p2-service
namespace: project-hamster
resourceversion: "11071"
selfLink: /api/vl/namespaces/project-hamster/services/p2-service
uid: 2alc0842-7fb6-4e94-8cdb-1602a3ble7d2

spec:
clusteripP: 10.97.45.18
ports:
- port: 3000

protocol: TCP

targetPort: 80
selector:

run: p2-pod
sessionAffinity: None
type: ClusterIP

status:

loadBalancer: {}

We should confirm Pods and Services are connected, hence the Service should have Endpoints.

k -n project-hamster get pod,svc,ep

Confirm kube-proxy is running and is using iptables

First we get nodes in the cluster:

- k get node

NAME STATUS ROLES AGE VERSION
clusterl-masterl Ready master 98m v1.23.1
clusterl-workerl Ready <none> 96m v1.23.1
clusterl-worker?2 Ready <none> 95m v1.23.1

The idea here is to log into every node, find the kube-proxy container and check its logs:

- ssh clusterl-masterl

- root@clusterl-masterl$ crict]l ps | grep kube-proxy
27b6a18c0f89c 36c4ebbc9d979 3 hours ago Running kube-proxy

- root@clusterl-masterl~# crict]l logs 27b6al8c0f89c

I0913 12:53:03.096620 1 server_others.go:212] Using iptables Proxier.
This should be repeated on every node and result in the same output Using iptables Proxier.

Check kube-proxy is creating iptables rules

Now we check the iptables rules on every node first manually:

- ssh clusterl-masterl iptables-save | grep p2-service
-A KUBE-SEP-6U447UXLLQIKP7BB -s 10.44.0.20/32 -m comment --comment "project-hamster/p2-service:" -j KUBE-MARK-MASQ

-A KUBE-SEP-6U447UXLLQIKP7BB -p tcp -m comment --comment "project-hamster/p2-service:" -m tcp -j DNAT --to-destination
10.44.0.20:80

-A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.97.45.18/32 -p tcp -m comment --comment "project-hamster/p2-service: cluster
IP" -m tcp --dport 3000 -j KUBE-MARK-MASQ

-A KUBE-SERVICES -d 10.97.45.18/32 -p tcp -m comment --comment "project-hamster/p2-service: cluster IP" -m tcp --dport
3000 -j KUBE-SVC-2A6FNMCK6FDH7PJH

-A KUBE-SVC-2A6FNMCK6FDH7PJH -m comment --comment "project-hamster/p2-service:" -j KUBE-SEP-6U447UXLLQIKP7BB

= ssh clusterl-workerl iptables-save | grep p2-service

-A KUBE-SEP-6U447UXLLQIKP7BB -s 10.44.0.20/32 -m comment --comment "project-hamster/p2-service:" -j KUBE-MARK-MASQ

-A KUBE-SEP-6U447UXLLQIKP7BB -p tcp -m comment --comment "project-hamster/p2-service:" -m tcp -j DNAT --to-destination
10.44.0.20:80

-A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.97.45.18/32 -p tcp -m comment --comment "project-hamster/p2-service: cluster
IP" -m tcp --dport 3000 -j KUBE-MARK-MASQ

-A KUBE-SERVICES -d 10.97.45.18/32 -p tcp -m comment --comment "project-hamster/p2-service: cluster IP" -m tcp --dport
3000 -j KUBE-SVC-2A6FNMCK6FDH7PJH

-A KUBE-SVC-2A6FNMCK6FDH7PJH -m comment --comment "project-hamster/p2-service:" -j KUBE-SEP-6U447UXLLQIKP7BB

- ssh clusterl-worker2 iptables-save | grep p2-service

-A KUBE-SEP-6U447UXLLQIKP7BB -s 10.44.0.20/32 -m comment --comment "project-hamster/p2-service:" -j KUBE-MARK-MASQ

-A KUBE-SEP-6U447UXLLQIKP7BB -p tcp -m comment --comment "project-hamster/p2-service:" -m tcp -j DNAT --to-destination
10.44.0.20:80

-A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.97.45.18/32 -p tcp -m comment --comment "project-hamster/p2-service: cluster

IP" -m tcp --dport 3000 -j KUBE-MARK-MASQ

-A KUBE-SERVICES -d 10.97.45.18/32 -p tcp -m comment --comment "project-hamster/p2-service: cluster IP" -m tcp --dport
3000 -j KUBE-SVC-2A6FNMCK6FDH7PJH

-A KUBE-SVC-2A6FNMCK6FDH7PJH -m comment --comment "project-hamster/p2-service:" -j KUBE-SEP-6U447UXLLQIKP7BB

Great. Now let's write these logs into the requested file:

- ssh clusterl-masterl iptables-save | grep p2-service >> /opt/course/p2/iptables.txt
- ssh clusterl-workerl iptables-save | grep p2-service >> /opt/course/p2/iptables.txt
- ssh clusterl-worker2 iptables-save | grep p2-service >> /opt/course/p2/iptables.txt

Delete the Service and confirm iptables rules are gone

Delete the Service:

k -n project-hamster delete svc p2-service

And confirm the iptables rules are gone:

= ssh clusterl-masterl iptables-save | grep p2-service
- ssh clusterl-workerl iptables-save | grep p2-service
- ssh clusterl-worker2 iptables-save | grep p2-service

Done.

Kubernetes Services are implemented using iptables rules (with default config) on all nodes. Every time a Service has been altered, created,
deleted or Endpoints of a Service have changed, the kube-apiserver contacts every node's kube-proxy to update the iptables rules according to
the current state.

Preview Question 3

Use context: kubectl config use-context k8s-c2-AC

Create a Pod named check-ip in Namespace default usingimage httpd:2.4.41-alpine. Expose it on port 80 as a ClusterlP Service named
check-ip-service . Remember/output the IP of that Service.

Change the Service CIDR to 11.96.0.0/12 for the cluster.

Then create a second Service named check-ip-service2 pointing to the same Pod to check if your settings did take effect. Finally check if the
IP of the first Service has changed.

Answer:

Let's create the Pod and expose it:
k run check-ip --image=httpd:2.4.41-alpine
k expose pod check-ip --name check-ip-service --port 80

And check the Pod and Service ips:

- k get svc,ep -1 run=check-ip

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/check-ip-service ClusteripP 10.104.3.45 <none> 80/TCP 8s
NAME ENDPOINTS AGE

endpoints/check-ip-service 10.44.0.3:80 7s

Now we change the Service CIDR on the kube-apiserver:

- ssh cluster2-masterl

- root@cluster2-masterl:~# vim /etc/kubernetes/manifests/kube-apiserver.yaml

/etc/kubernetes/manifests/kube-apiserver.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system
spec:
containers:
- command:
kube-apiserver
- --advertise-address=192.168.100.21

- --service-account-key-file=/etc/kubernetes/pki/sa.pub
--service-cluster-ip-range=11.96.0.0/12 # change
--tls-cert-file=/etc/kubernetes/pki/apiserver.crt
--tIs-private-key-file=/etc/kubernetes/pki/apiserver.key

Give it a bit for the kube-apiserver and controller-manager to restart

Wait for the api to be up again:

= root@cluster2-masterl:~# kubectl -n kube-system get pod | grep api
kube-apiserver-cluster2-masterl 1/1 Running 0 49s

Now we do the same for the controller manager:

- root@cluster2-masterl:~# vim /etc/kubernetes/manifests/kube-controller-manager.yaml

/etc/kubernetes/manifests/kube-controller-manager.yaml
apiversion: vl
kind: Pod
metadata:
creationTimestamp: null
Tabels:
component: kube-controller-manager
tier: control-plane
name: kube-controller-manager
namespace: kube-system
spec:
containers:
- command:
- kube-controller-manager
- --allocate-node-cidrs=true
- --authentication-kubeconfig=/etc/kubernetes/controller-manager.conf
- --authorization-kubeconfig=/etc/kubernetes/controller-manager.conf
- --bind-address=127.0.0.1
--client-ca-file=/etc/kubernetes/pki/ca.crt
- --cluster-cidr=10.244.0.0/16
- --cluster-name=kubernetes
- --cluster-signing-cert-file=/etc/kubernetes/pki/ca.crt
- --cluster-signing-key-file=/etc/kubernetes/pki/ca.key
- --controllers=*,bootstrapsigner,tokencleaner
--kubeconfig=/etc/kubernetes/controller-manager.conf
--Teader-elect=true
--node-cidr-mask-size=24
--requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
--root-ca-file=/etc/kubernetes/pki/ca.crt
--service-account-private-key-file=/etc/kubernetes/pki/sa.key
--service-cluster-ip-range=11.96.0.0/12 # change
--use-service-account-credentials=true

Give it a bit for the controller-manager to restart.

We can check if it was restarted using crictl:

- root@cluster2-masterl:~# crictl ps | grep scheduler
3d258934b9fd6 acaSededae9c8 About a minute ago Running kube-scheduler ...

Checking our existing Pod and Service again:

- k get pod,svc -1 run=check-ip

NAME READY STATUS RESTARTS AGE
pod/check-1ip 1/1 Running 0 21m
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/check-ip-service Clusterip 10.99.32.177 <none> 80/TCP 21m

Nothing changed so far. Now we create another Service like before:

k expose pod check-ip --name check-ip-service2 --port 80

And check again:

- k get svc,ep -1 run=check-ip

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/check-ip-service ClusterIpP 10.109.222.111 <none> 80/TCP 8m
service/check-ip-service2 Clusterip 11.111.108.194 <none> 80/TcCP 6m32s
NAME ENDPOINTS AGE

endpoints/check-ip-service 10.44.0.1:80 8m
endpoints/check-ip-service2 10.44.0.1:80 6ml3s

There we go, the new Service got an ip of the new specified range assigned. We also see that both Services have our Pod as endpoint.

CKA Tips Kubernetes 1.23

In this section we'll provide some tips on how to handle the CKA exam and browser terminal.

Knowledge

Study all topics as proposed in the curriculum till you feel comfortable with all.

Resources

The majority of tasks in the CKA will also be around creating Kubernetes resources, like its tested in the CKAD. So we suggest to do:

Maybe 2-3 times https://github.com/dgkanatsios/CKAD-exercises
The CKAD series with scenarios on Medium

The CKA series with scenarios on Medium
Imagine and create your own scenarios to solve

Know advanced scheduling: https://kubernetes.io/docs/concepts/scheduling/kube-scheduler

Components

The other part is understanding Kubernetes components and being able to fix and investigate clusters. Understand this: https://kubernet
es.io/docs/tasks/debug-application-cluster/debug-cluster

When you have to fix a component (like kubelet) in one cluster, just check how its setup on another node in the same or even another
cluster. You can copy config files over etc

If you like you can look at Kubernetes The Hard Way once. But it's NOT necessary to do, the CKA is not that complex. But KTHW helps
understanding the concepts

You should install your own cluster using kubeadm (one master, one worker) in a VM or using a cloud provider and investigate the
components

Know how to use kubeadm to for example add nodes to a cluster

Know how to create an Ingress resources

Know how to snapshot/restore ETCD from another machine

General

Do 1 or 2 test session with this CKA Simulator. Understand the solutions and maybe try out other ways to achieve the same thing.

Setup your aliases, be fast and breath kubectl

CKA Preparation

Read the Curriculum

https://github.com/cncf/curriculum

Read the Handbook

https://github.com/dgkanatsios/CKAD-exercises
https://codeburst.io/kubernetes-ckad-weekly-challenges-overview-and-tips-7282b36a2681
https://medium.com/@wuestkamp/kubernetes-cka-example-questions-practical-challenge-86318d85b4d?source=friends_link&sk=cb63eb0edd1210851f01df24b2142db2
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/cncf/curriculum

https://docs.linuxfoundation.org/tc-docs/certification/If-candidate-handbook

Read the important tips

https://docs.linuxfoundation.org/tc-docs/certification/tips-cka-and-ckad

Read the FAQ

https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad

Kubernetes documentation

Get familiar with the Kubernetes documentation and be able to use the search. You can have one browser tab open with one of the allowed
links: https://kubernetes.io/docs https://github.com/kubernetes https://kubernetes.io/blog

NOTE: You can have the other tab open as a separate window, this is why a big screen is handy

Deprecated commands

Make sure to not depend on deprecated commands as they might stop working at any time. When you execute a deprecated kubect]

command a message will be shown, so you know which ones to avoid.

With kubect1 version 1.18+ things have changed. Like its no longer possible to use kubect1 run to create Jobs, Cronjobs or Deployments,
only Pods still work. This makes things a bit more verbose when you for example need to create a Deployment with resource limits or multiple

replicas.

What if we need to create a Deployment which has, for example, a resources section? We could use both kubect1 run and kubectl create,

then do some vim magic. Read more here.

The Test Environment / Browser Terminal

You'll be provided with a browser terminal which uses Ubuntu 20. The standard shells included with a minimal install of Ubuntu 20 will be
available, including bash.

Laggin

There could be some lagging, definitely make sure you are using a good internet connection because your webcam and screen are uploading
all the time.

Kubectl autocompletion and commands

Autocompletion is configured by default, as well as the k alias source and others:

kubect1 with k alias and Bash autocompletion
yq and jq for YAML/JSON processing

tmux for terminal multiplexing

curl and wget for testing web services

man and man pages for further documentation
Copy & Paste

There could be issues copying text (like pod names) from the left task information into the terminal. Some suggested to "hard" hit or long hold
cmd/ctrl1+C a few times to take action. Apart from that copy and paste should just work like in normal terminals.

Percentages and Score

There are 15-20 questions in the exam and 100% of total percentage to reach. Each questions shows the % it gives if you solve it. Your results
will be automatically checked according to the handbook. If you don't agree with the results you can request a review by contacting the Linux

Foundation support.
Notepad & Skipping Questions

You have access to a simple notepad in the browser which can be used for storing any kind of plain text. It makes sense to use this for saving
skipped question numbers and their percentages. This way it's possible to move some questions to the end. It might make sense to skip 2% or

3% questions and go directly to higher ones.
Contexts

You'll receive access to various different clusters and resources in each. They provide you the exact command you need to run to connect to
another cluster/context. But you should be comfortable working in different namespaces with kubect1 .

Your Desktop

You are allowed to have multiple monitors connected and have to share every monitor with the proctor. Having one large screen definitely
helps as you're only allowed one application open (Chrome Browser) with two tabs, one terminal and one k8s docs.

NOTE: You can have the other tab open as a separate window, this is why a big screen is handy

The questions will be on the left (default maybe ~30% space), the terminal on the right. You can adjust the size of the split though to your

needs in the real exam.

https://docs.linuxfoundation.org/tc-docs/certification/lf-candidate-handbook
https://docs.linuxfoundation.org/tc-docs/certification/tips-cka-and-ckad
https://docs.linuxfoundation.org/tc-docs/certification/faq-cka-ckad
https://kubernetes.io/docs
https://github.com/kubernetes
https://kubernetes.io/blog
https://medium.com/@wuestkamp/be-fast-with-kubectl-1-18-ckad-cka-31be00acc443?source=friends_link&sk=a66ae3c7b7ee85cb9c43129e7cf406e6
https://docs.linuxfoundation.org/tc-docs/certification/tips-cka-and-ckad

If you use a laptop you could work with lid closed, external mouse+keyboard+monitor attached. Make sure you also have a
webcam+microphone working.

You could also have both monitors, laptop screen and external, active. You might be asked that your webcam points straight into your face. So
using an external screen and your laptop webcam could not be accepted. Just keep that in mind.

You have to be able to move your webcam around in the beginning to show your whole room and desktop. Have a clean desk with only the
necessary on it. You can have a glass/cup with water without anything printed on.

In the end you should feel very comfortable with your setup.

Browser Terminal Setup

It should be considered to spend ~1 minute in the beginning to setup your terminal. In the real exam the vast majority of questions will be
done from the main terminal. For few you might need to ssh into another machine. Just be aware that configurations to your shell will not be
transferred in this case.

Minimal Setup

Alias

The alias k for kubect1 will be configured together with autocompletion. In case not you can configure it using this link.
Vim

Create the file ~/.vimrc with the following content:

set tabstop=2
set expandtab
set shiftwidth=2

The expandtab make sure to use spaces for tabs. Memorize these and just type them down. You can't have any written notes with commands

on your desktop etc.

Optional Setup

Fast dry-run output
export do="--dry-run=client -o yaml"

This way you can just run k run podl --image=nginx $do . Short for "dry output", but use whatever name you like.

Fast pod delete
export now="--force --grace-period 0"

This way you can run k delete podl $now and don't have to wait for ~30 seconds termination time.

Persist bash settings

You can store aliases and other setup in ~/.bashrc if you're planning on using different shells or tmux .

Be fast

Use the history command to reuse already entered commands or use even faster history search through Ctrlr .

If a command takes some time to execute, like sometimes kubect1 delete pod x.You can put a task in the background using Ctrl z and pull
it back into foreground running command fg.

You can delete pods fast with:

k delete pod x --grace-period 0 --force

k delete pod x $now # if export from above is configured

Vim
Be great with vim.

Toggle vim line numbers

When in vim you can press Esc and type :set number or :set nonumber followed by Enter to toggle line numbers. This can be useful when
finding syntax errors based on line - but can be bad when wanting to mark© by mouse. You can also just jump to a line number with Esc
:22 + Enter.

Copy&paste

Get used to copy/paste/cut with vim:

https://kubernetes.io/docs/reference/kubectl/cheatsheet

Mark lines: Esc+V (then arrow keys)
Copy marked lines: y
Cut marked Tines: d
Past Tines: p or P
Indent multiple lines

In case not defined in .vimrc, to indent multiple lines press Esc and type :set shiftwidth=2.

First mark multiple lines using shift v and the up/down keys. Then to indent the marked lines press > or <. You can then press . to
repeat the action.

Split terminal screen

By default tmux is installed and can be used to split your one terminal into multiple. But just do this if you know your shit, because scrolling is
different and copy&pasting might be weird.

https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux

wuestkamp.com design faq store support legal / privacy

https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux
https://www.wuestkamp.com/
https://busayyyo.github.io/
https://killer.sh/faq
https://killer.sh/order
https://killer.sh/support
https://killer.sh/legal

